
- Photonics Research
- Vol. 10, Issue 2, 557 (2022)
Abstract
1. INTRODUCTION
Exceptional points (EPs) in non-Hermitian systems have attracted broad interest in recent years due to their topological properties and applications in sensing technology [1–4]. The energy eigenvalues of non-Hermitian systems coalesce at the EPs [5], and the complex eigenspectra possess the topology of complex Riemann surfaces. EPs exist in various physical systems, including microwave [6,7], photonic [8–27], optomechanical [28,29], atomic [30,31], electronic [32–35], condensed matter [36,37], acoustic [38], and other systems [39–41]. The nontrivial topological property of EPs makes the spectra of non-Hermitian systems fundamentally different from those of Hermitian systems [42–50]. Topological dynamics by adiabatic encircling of EPs has recently been realized in optomechanical experiments [28,51], which can be simulated by microwave and optical waveguide systems [52–57]. On the other hand, the nonlinear signature of the complex spectra around the EP singularities has been used for advanced sensing technology with EP-enhanced sensitivity [13,14,20,27,35,58]. So far, EP-enhanced sensing has mainly been focused on systems above the optical wavelength scale due to diffraction limits. Local surface plasmon-exciton hybrid systems can offer sensing devices beyond the diffraction limit and with intrinsic nanoscale spatial resolution [59–62]. It is intriguing to develop a scheme to implement the EPs in plasmon-exciton systems for enhanced sensitivity while maintaining the advantages that plasmon-exciton sensors already possess.
Here, we propose an experimental scheme to realize EPs in a plasmon-exciton hybrid system that consists of a gold nanorod (GNR) and monolayer
2. THEORY AND CONFIGURATIONS
Our plasmon-exciton hybrid system is depicted in Fig. 1(a). A monolayer of
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
Figure 1.Plasmon-exciton system with adjustable scattering spectrum. (a) Schematic of the plasmon-exciton system composed of a GNR and a monolayer
We use the scattering spectrum, which is experimentally accessible, to extract the resonance frequencies and loss rates of the hybrid modes. A typical scattering spectrum of the plasmon-exciton system is shown in Fig. 1(b). The scattering spectrum can be calculated by standard finite-difference time-domain (FDTD) simulation. By fitting the scattering spectrum with a double-Lorentzian function, we can obtain the resonance frequencies and loss rates of the hybrid modes, as shown in Fig. 1(b), which correspond to the real and imaginary parts of the eigenvalues of the system.
The coupling strength between the GNR and
3. RESULTS
The precise control over the coupling strength and relative resonance frequencies allows us to realize and observe the EP in the plasmon-exciton system. Figure 2(a) depicts the cross section view of the system. We tune the thickness of the
Figure 2.Spectra and EPs of plasmon-exciton systems. (a) Plasmon-exciton system of configuration I, where GNR and
As we have observed the EP in the plasmon-exciton system, we continue to explore its application in EP-enhanced sensing. We first consider the sensing of environmental refractive index, which is essential for environmental monitoring and chemical sensing. Variation in the refractive index leads to the variation of the resonance frequency of the GNR, and this effect can be enhanced by the EP in the hybrid system. In order to simulate the sensing of the environmental refractive index, we add a cladding layer with a variable refractive index on top of the plasmon-exciton hybrid sensor. In Fig. 3, we compare the sensitivity of EP-enhanced sensing using a plasmon-exciton hybrid sensor (performed near the EP with
Figure 3.Sensing of environmental refractive index with a plasmon-exciton sensor. (a) Scattering spectra of EP-enhanced sensing of environmental refractive index with a plasmon-exciton sensor. The system is covered by a cladding layer with a refractive index of
In addition to the EP-enhanced sensitivity, the plasmon-exciton hybrid sensor has the capability of nanoscale sensing for the environmental refractive index due to the sub-diffraction-limit size of the plasmonic resonator. We simulate the nanoscale sensing by a local refractive index variation within a box region (
Figure 4.Nanoscale sensing of environmental refractive index with a plasmon-exciton sensor. (a) Schematic of nanoscale sensing of the environmental refractive index variation within the box region (
The EP-enhanced sensor can also be used for nanoparticle sensing. For example, it can be used to check the length of a GNR in a non-invasive way. In this case, the GNR is both part of the plasmon-exciton hybrid system and the object to be measured. In Figs. 5(a) and 5(b), we show the scattering spectra of EP-enhanced sensing with plasmon-exciton hybrid modes and regular sensing with a single plasmonic mode for various GNR lengths. In Fig. 5(c), we show the variation of resonance frequency difference and loss rate difference between the hybrid modes and variation of resonance frequency and loss rate of the single plasmonic mode as the GNR length changes. In Fig. 5(d), we compare the absolute value variation of the eigenvalue difference between the hybrid modes and the absolute value variation of the eigenvalue of the single plasmonic mode. Again, we see that the EP-enhanced sensing with plasmon-exciton hybridization is more sensitive and follows the square root signature near the EP.
Figure 5.Sensing of nanoparticle length. (a) Scattering spectra of EP-enhanced sensing of GNR length by plasmon-exciton hybridization. The GNR can be randomly placed on top of the sensor within the area of
4. CONCLUSION
In conclusion, EPs are realized in plasmon-exciton hybrid systems. Plasmon-exciton sensors with EP-enhanced sensitivity can be used for nanoscale sensing of environmental refractive index changes and nanoparticles. They can also be used to detect other nanoparticles or materials that either change the effective refractive index around the GNR or modify the coupling between the plasmon and exciton modes and could find real-life applications such as environmental monitoring and biomolecule detection.
References
[1] D. Heiss. Circling exceptional points. Nat. Phys., 12, 823-824(2016).
[2] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11-19(2018).
[3] M. A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).
[4] S. K. Ozdemir, S. Rotter, F. Nori, L. Yang. Parity-time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).
[5] T. Kato. Perturbation Theory of Linear Operators(1966).
[6] C. Dembowski, H. Graf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, A. Richter. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 86, 787-790(2001).
[7] S. Bittner, B. Dietz, U. Gunther, H. L. Harney, M. Miski-Oglu, A. Richter, F. Schafer. PT symmetry and spontaneous symmetry breaking in a microwave billiard. Phys. Rev. Lett., 108, 024101(2012).
[8] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 103, 093902(2009).
[9] S. B. Lee, J. Yang, S. Moon, S. Y. Lee, J. B. Shim, S. W. Kim, J. H. Lee, K. An. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett., 103, 134101(2009).
[10] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schoberl, H. E. Tureci, G. Strasser, K. Unterrainer, S. Rotter. Reversing the pump dependence of a laser at an exceptional point. Nat. Commun., 5, 4034(2014).
[11] B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, M. Soljacic. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).
[12] Z. Lin, A. Pick, M. Loncar, A. W. Rodriguez. Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett., 117, 107402(2016).
[13] W. Chen, S. Kaya Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).
[14] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).
[15] T. Goldzak, A. A. Mailybaev, N. Moiseyev. Light stops at exceptional points. Phys. Rev. Lett., 120, 013901(2018).
[16] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D. Joannopoulos, M. Soljacic, B. Zhen. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science, 359, 1009-1012(2018).
[17] H. Zhao, Z. Chen, R. Zhao, L. Feng. Exceptional point engineered glass slide for microscopic thermal mapping. Nat. Commun., 9, 1764(2018).
[18] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin-orbit interaction in coupled resonators. Nat. Commun., 10, 832(2019).
[19] M. A. Quiroz-Juárez, A. Perez-Leija, K. Tschernig, B. M. Rodríguez-Lara, O. S. Magaña-Loaiza, K. Busch, Y. N. Joglekar, R. D. J. León-Montiel. Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection. Photon. Res., 7, 862-867(2019).
[20] J. H. Park, A. Ndao, W. Cai, L. Y. Hsu, A. Kodigala, T. Lepetit, Y. H. Lo, B. Kante. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).
[21] C. Q. Wang, X. F. Jiang, G. M. Zhao, M. Z. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).
[22] T. Wu, W. Zhang, H. Zhang, S. Hou, G. Chen, R. Liu, C. Lu, J. Li, R. Wang, P. Duan, J. Li, B. Wang, L. Shi, J. Zi, X. Zhang. Vector exceptional points with strong superchiral fields. Phys. Rev. Lett., 124, 083901(2020).
[23] A. Bergman, R. Duggan, K. Sharma, M. Tur, A. Zadok, A. Alu. Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. Nat. Commun., 12, 486(2021).
[24] L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue. Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 126, 230402(2021).
[25] W. Zhang, H. Chiang, T. Wen, L. Ye, H. Lin, H. Xu, Q. Gong, G. Lu. Exotic coupling between plasmonic nanoparticles through geometric configurations. J. Lightwave Technol., 39, 6646-6652(2021).
[26] C. Wang, W. R. Sweeney, A. D. Stone, L. Yang. Coherent perfect absorption at an exceptional point. Science, 373, 1261-1265(2021).
[27] G. Q. Qin, R. R. Xie, H. Zhang, Y. Q. Hu, M. Wang, G. Q. Li, H. T. Xu, F. C. Lei, D. Ruan, G. L. Long. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photon. Rev., 15, 2000569(2021).
[28] H. Xu, D. Mason, L. Jiang, J. G. Harris. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537, 80-83(2016).
[29] J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer, G. M. Zhao, F. Nori, Y. X. Liu, S. Rotter, L. Yang. A phonon laser operating at an exceptional point. Nat. Photonics, 12, 479-484(2018).
[30] Y. Choi, S. Kang, S. Lim, W. Kim, J. R. Kim, J. H. Lee, K. An. Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett., 104, 153601(2010).
[31] L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, W. Zhang. Experimental determination of PT-symmetric exceptional points in a single trapped ion. Phys. Rev. Lett., 126, 083604(2021).
[32] T. Stehmann, W. D. Heiss, F. G. Scholtz. “Observation of exceptional points in electronic circuits. J. Phys. A, 37, 7813-7819(2004).
[33] M. Sakhdari, M. Hajizadegan, Q. Zhong, D. N. Christodoulides, R. El-Ganainy, P. Y. Chen. Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 123, 193901(2019).
[34] L. J. Fernandez-Alcazar, H. Li, F. Ellis, A. Alu, T. Kottos. Robust scattered fields from adiabatically driven targets around exceptional points. Phys. Rev. Lett., 124, 133905(2020).
[35] Z. Guo, T. Zhang, J. Song, H. Jiang, H. Chen. Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 9, 574-582(2021).
[36] S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 121, 086803(2018).
[37] K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 123, 066405(2019).
[38] W. Tang, X. Jiang, K. Ding, Y. X. Xiao, Z. Q. Zhang, C. T. Chan, G. Ma. Exceptional nexus with a hybrid topological invariant. Science, 370, 1077-1080(2020).
[39] T. Gao, E. Estrecho, K. Y. Bliokh, T. C. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 526, 554-558(2015).
[40] D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, J. Q. You. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 8, 1368(2017).
[41] A. Ben-Asher, D. Simsa, T. Uhlirova, M. Sindelka, N. Moiseyev. Laser control of resonance tunneling via an exceptional point. Phys. Rev. Lett., 124, 253202(2020).
[42] W. D. Heiss. Phases of wave functions and level repulsion. Eur. Phys. J. D, 7, 1-4(1999).
[43] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).
[44] R. Lefebvre, O. Atabek, M. Sindelka, N. Moiseyev. Resonance coalescence in molecular photodissociation. Phys. Rev. Lett., 103, 123003(2009).
[45] R. Uzdin, A. Mailybaev, N. Moiseyev. “On the observability and asymmetry of adiabatic state flips generated by exceptional points. J. Phys. A, 44, 435302(2011).
[46] S. W. Kim. Braid operation of exceptional points. Fortschr. Phys., 61, 155-161(2013).
[47] P. R. Kapralova-Zdanska, N. Moiseyev. Helium in chirped laser fields as a time-asymmetric atomic switch. J. Chem. Phys., 141, 014307(2014).
[48] M. Hamamda, P. Pillet, H. Lignier, D. Comparat. Ro-vibrational cooling of molecules and prospects. J. Phys. B, 48, 182001(2015).
[49] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, P. Rabl. General description of quasiadiabatic dynamical phenomena near exceptional points. Phys. Rev. A, 92, 052124(2015).
[50] A. U. Hassan, B. Zhen, M. Soljacic, M. Khajavikhan, D. N. Christodoulides. Dynamically encircling exceptional points: exact evolution and polarization state conversion. Phys. Rev. Lett., 118, 093002(2017).
[51] H. Xu, D. Mason, L. Jiang. Topological dynamics in an optomechanical system with highly non-degenerate modes(2017).
[52] J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, S. Rotter. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).
[53] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, P. Berini. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nat. Commun., 8, 14154(2017).
[54] J. W. Yoon, Y. Choi, C. Hahn, G. Kim, S. H. Song, K. Y. Yang, J. Y. Lee, Y. Kim, C. S. Lee, J. K. Shin, H. S. Lee, P. Berini. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature, 562, 86-90(2018).
[55] X. L. Zhang, T. Jiang, C. T. Chan. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light Sci. Appl., 8, 88(2019).
[56] A. Li, J. Dong, J. Wang, Z. Cheng, J. S. Ho, D. Zhang, J. Wen, X. L. Zhang, C. T. Chan, A. Alu, C. W. Qiu, L. Chen. Hamiltonian hopping for efficient chiral mode switching in encircling exceptional points. Phys. Rev. Lett., 125, 187403(2020).
[57] Q. Liu, S. Li, B. Wang, S. Ke, C. Qin, K. Wang, W. Liu, D. Gao, P. Berini, P. Lu. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett., 124, 153903(2020).
[58] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone, L. Jiang. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett., 123, 180501(2019).
[59] A. Hu, W. Zhang, S. Liu, T. Wen, J. Zhao, Q. Gong, Y. Ye, G. Lu.
[60] J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, H. Xu. Light-emitting plexciton: exploiting plasmon–exciton interaction in the intermediate coupling regime. ACS Nano, 12, 10393-10402(2018).
[61] X. Li, L. Zhou, Z. Hao, Q.-Q. Wang. Plasmon-exciton coupling in complex systems. Adv. Opt. Mater., 6, 1800275(2018).
[62] S. N. Gupta, O. Bitton, T. Neuman, R. Esteban, L. Chuntonov, J. Aizpurua, G. Haran. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nat. Commun., 12, 1310(2021).
[63] M. H. Elshorbagy, A. Cuadrado, J. Alda. Plasmonic sensor based on dielectric nanoprisms. Nano. Res. Lett., 12, 580(2017).
[64] G. Lu, L. Hou, T. Zhang, J. Liu, H. Shen, C. Luo, Q. Gong. Plasmonic sensing via photoluminescence of individual gold nanorod. J. Phys. Chem. C, 116, 25509-25516(2012).

Set citation alerts for the article
Please enter your email address