• Journal of Inorganic Materials
  • Vol. 35, Issue 4, 399 (2020)
Yiwang BAO1、2, Yi SUN2, Fenghua KUANG1, Yueming LI2, and Detian WAN1、2
Author Affiliations
  • 1State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
  • 2School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
  • show less
    DOI: 10.15541/jim20190360 Cite this Article
    Yiwang BAO, Yi SUN, Fenghua KUANG, Yueming LI, Detian WAN. Development and Prospects of High Strength Pre-stressed Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 399 Copy Citation Text show less
    References

    [1] Z KRSTIC. Silicon nitride: the engineering material of the future. J. Mater. Sci., 47, 535-552(2012).

    [2] E LAUNEY M, O RITCHIE R. On the fracture toughness of advanced materials. Adv. Mater., 21, 2103-2110(2009).

    [3] K GUO J. Stress design of ceramic grain boundary. J. Inorg. Mater., 1, 27-31(1995).

    [4] S GOHARDANI A, O GOHARDANI. Ceramic engine considerations for future aerospace propulsion. Aircr. Eng. Aerosp. Tec., 84, 75-86(2012).

    [5] C GARVIE R, H HANNINK R, T PASCOE R. Ceramic steel?. Nature, 258, 703-704(1975).

    [6] D JOHNSTON R, D CHIPMAN R, J KNAPP W. Prestressed ceramics as a structural material. J. Am. Ceram. Soc., 36, 121-126(1953).

    [7] J GREEN D. Crack arrest and multiple cracking in glass through the use of designed residual stress profiles. Science, 283, 1295-1297(1999).

    [8] L WONDRACZEK, C MAURO J, J ECKERT et al. Towards ultrastrong glasses. Adv. Mater., 23, 4578-4586(2011).

    [9] H INSLEY R, J BARCZAK V. Thermal conditioning of polycrystalline alumina ceramics. J. Am. Ceram. Soc., 47, 1-4(2006).

    [10] L CHEN, A WANG, S XIANGBO et al. Effect of surface heat transfer coefficient gradient on thermal shock failure of ceramic materials under rapid cooling condition. Ceram. Int., 44, 8992-8999(2018).

    [11] S BARBI, C MUGONI, M MONTORSI et al. Chemical hardening of glazed porcelain tiles. J. Am. Ceram. Soc., 102, 2853-2862(2019).

    [12] Z SHAN, J LIU, F SHI et al. A new strengthening theory for improving the fracture strength of lithium disilicate glass-ceramics by introducing Rb or Cs ions. J. Non-Cryst. Solids, 481, 479-485(2018).

    [13] W RICHERSON D, M DEKKER. Modern ceramic engineering, process, processing and use in design. New York, 2nd edition revised, 21-33(1992).

    [14] A GRIFFITH A. The phenomena of rupture and flow in solids. Phil. Trans., 221, 163-198(1921).

    [16] L MESSING G, J STEVENSON A. Toward pore-free ceramics. Science, 322, 383-384(2008).

    [17] M ALFORD N, D BIRCHALL J, K KENDALL. High-strength ceramics through colloidal control to remove defects. Nature, 330, 51-53(1987).

    [18] W WANG, Z FU, H WANG et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J. Eur. Ceram. Soc., 22, 1045-1049(2002).

    [19] H HUANG Y, L JIANG D, F ZHANG X et al. Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering. J. Eur. Ceram. Soc., 38, 4329-4337(2018).

    [20] Y HAN, S LI, T ZHU et al. An oscillatory pressure sintering of zirconia powder: densification trajectories and mechanical properties. J. Am. Ceram. Soc., 101, 1824-1829(2018).

    [21] S LI, P XIE Z, J XUE W. Microstructure and mechanical properties of zirconia ceramics consolidated by a novel oscillatory pressure sintering. Ceram. Int., 41, 10281-10286(2015).

    [22] S LI, P XIE Z. Preparation of zirconia ceramics with high density and fine grains by oscillatory pressure sintering. J. Inorg. Mater., 31, 207-212(2016).

    [23] T ZHU, Z XIE, Y HAN et al. Improved mechanical properties of Al2O3-25vol% SiCw composites prepared by oscillatory pressure sintering. Ceram. Int., 43, 15437-15441(2017).

    [24] et alStructural evolution and the Hall-Petch relationship in an Al-Mg-Li-Zr alloy with ultra-fine grain size. Acta Mater., 45, 4751-4757(1997).

    [25] Y HIRATA, N SUZUE, N MATSUNAGA et al. Particle size effect of starting SiC on processing, microstructures and mechanical properties of liquid phase-sintered SiC. J. Eur. Ceram. Soc., 30, 1945-1954(2010).

    [27] D ZhAN G, D KUNTZ J, J WAN et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater., 2, 38-42(2003).

    [28] P PADTURE N. Multifunctional composites of ceramics and single walled carbon nanotubes. Adv. Mater., 21, 1767-1770(2010).

    [29] G OSTEEN K, L BRUNER K, D ONG et al. Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater., 17, 1519-1523(2010).

    [30] L ZHANG, Y BEN, J WU et al. Alumina assisted grain refinement and physical performance enhancement of yttria transparent ceramics by two-step sintering. Mat. Sci. Eng. A, 684, 466-469(2017).

    [31] S FISHER E, H MANGHNANI M, F WANG J et al. Elastic properties of Al2O3 and Si3N4 matrix composites with SiC whisker reinforcement. J. Am. Ceram. Soc., 75, 908-914(1992).

    [32] M KHODAEIA, O YAGHOBIZADEHB, S H N ALHOSSEINI et al. The effect of oxide, carbide, nitride and boride additives on properties of pressureless sintered SiC: a review. J. Eur. Ceram. Soc., 39, 2215-2231(2019).

    [33] S KUMAR, K SAIRAM, K SONBER J et al. Hot-pressing of MoSi2, reinforced B4C composites. Ceram. Int., 40, 16099-16105(2014).

    [34] H YU, Y CHEN, X GUO et al. Study on mechanical properties of hot pressing sintered mullite-ZrO2 composites with finite element method. Ceram. Int., 44, 7509-7514(2018).

    [35] X GUO, H YANG, L ZHANG et al. Sintering behavior, microstructure and mechanical properties of silicon carbide ceramics containing different nano-TiN additive. Ceram. Int., 36, 161-165(2010).

    [36] Y DING, S DONG, Q ZHOU et al. Preparation of C/SiC composites by hot pressing, using different C fiber content as reinforcement. J. Am. Ceram. Soc., 89, 1447-1449(2006).

    [37] X CHEN, T LI, Q REN et al. Mullite whisker network reinforced ceramic with high strength and lightweight. J. Alloy Compd., 700, 37-42(2017).

    [39] E NAWY. Reinforced concrete: a fundamental approach. Prentice-Hall, 2nd edition revised, 1-15(1996).

    [40] C MAURO J, S PHILIP C, J VAUGHN D et al. Glass science in the united states: current status and future directions. Int. J. Appl. Glass. Sci., 5, 2-15(2014).

    [41] S OLCOTT J. Chemical strengthening of glass. Science, 140, 1189-1193(1963).

    [42] M CHAUDHRI M, C LIANGYI. The catastrophic failure of thermally tempered glass caused by small-particle impact. Nature, 320, 48-50(1986).

    [44] L AURELIO I, S DORNELES L, G MAY L. Extended glaze firing on ceramics for hard machining: crack healing, residual stresses, optical and microstructural aspects. Dent Mater., 33, 226-240(2017).

    [45] Z SHAN, J LIU, M LIU et al. Surface strengthening of lithium disilicate glass-ceramic by ion-exchange using Rb, Cs nitrates. Ceram. Int., 44, 12466-12471(2018).

    [46] M DAL BÓ, L DOMINGUINI, A ZIMMER et al. Chemical tempering of porcelain tiles. Ceram. Int., 42, 15199-15202(2016).

    [47] J SONG, H YANG, R BERMEJO et al. Enhanced thermal shock response of Al2O3-graphite composites through a layered architectural design. J. Am. Ceram. Soc., 102, 3673-3684(2019).

    [48] S QIAN, F LIU, M MA et al. Mechanical strength enhancement of low temperature co-fired multilayer ceramic substrates by introducing residual stress. Ceram. Int., 45, 10982-10990(2019).

    [49] Y BAO, S SU, J YANG et al. Pre-stressed ceramics and improvement of impact resistance. Mater. Lett., 57, 518-524(2002).

    [51] Y BAO, F KUANG, Y SUN et al. A simple way to make pre-stressed ceramics with high strength. J. Materiomics., 5, 657-662(2019).

    [52] F ASHBY, M. Materials Selection in Mechanical Design. Oxford, 4th edition revised, 60-68(2011).

    Yiwang BAO, Yi SUN, Fenghua KUANG, Yueming LI, Detian WAN. Development and Prospects of High Strength Pre-stressed Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 399
    Download Citation