• Journal of Inorganic Materials
  • Vol. 35, Issue 3, 390 (2020)
Lijia DONG1, Siying WU1, Shengbo LI1, Zuofu WEI2..., Guo YANG1 and Baowei HU1,*|Show fewer author(s)
Author Affiliations
  • 1School of Life Science, Shaoxing University, Shaoxing 312000, China
  • 2School of Life Science, Shanxi Normal University, Linfen 041004, China
  • show less
    DOI: 10.15541/jim20190314 Cite this Article
    Lijia DONG, Siying WU, Shengbo LI, Zuofu WEI, Guo YANG, Baowei HU. Sorption Behaviors and Mechanisms of Eu(III) on Rice Straw-derived Biochar[J]. Journal of Inorganic Materials, 2020, 35(3): 390 Copy Citation Text show less
    References

    [1] HU B, HU Q, LI X et al. Rapid and highly efficient removal of Eu(III) from aqueous solutions using graphene oxide[J]. J. Mol. Liq., 229, 6-14(2017).

    [2] WANG X X, YU S J, WANG X K. Removal of radionuclides by metal-organic framework-based materials[J]. J. Inorg. Mater., 34, 17-26(2019).

    [3] WANG N, PANG H, YU S et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: a review[J]. Acta Chim. Sinica, 77, 143-152(2019).

    [4] SHENG G, DONG H, SHEN R et al. Microscopic insights into the temperature-dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique[J]. Chem. Eng. J., 217, 486-494(2013).

    [5] SHENG G, YANG Q, PENG F et al. Determination of colloidal pyrolusite, Eu(III) and humic substance interaction: a combined batch and EXAFS approach[J]. Chem. Eng. J., 245, 10-16(2014).

    [6] SHENG G, YANG S, LI Y et al. Retention mechanisms and microstructure of Eu(III) on manganese dioxide studied by batch and high resolution EXAFS technique[J]. Radiochim. Acta, 102, 155-167(2014).

    [7] ZHU Y, ZHENG C, WU S et al. Interaction of Eu(III) on magnetic biochar investigated by batch, spectroscopic and modeling techniques[J]. J. Radioanal. Nucl. Chem., 316, 1337-1346(2018).

    [8] XIE Y, HELVENSTON E M, SHULLER-NICKLES L C et al. Surface complexation modeling of Eu(III) and U(VI) interactions with graphene oxide[J]. Environ. Sci. Technol., 50, 1821-1827(2016).

    [9] BURNETT J L, CROUDACE I W, WARWICK P E. Pre-concentration of short-lived radionuclides using manganese dioxide precipitation from surface waters[J]. J. Radioanal. Nucl. Chem., 292, 25-28(2012).

    [10] PRAKASH D, GABANI P, CHANDEL A K et al. Bioremediation: a genuine technology to remediate radionuclides from the environment[J]. Microb. Biotechnol., 6, 349-360(2013).

    [11] HASSAN K F, SPELLERBERG S, SCHOLTEN B et al. Development of an ion-exchange method for separation of radioiodine from tellurium and antimony and its application to the production of 124I via the 121Sb (α, n)-process[J]. J. Radioanal. Nucl. Chem., 302, 689-694(2014).

    [12] SHENG G, YANG S, ZHAO D et al. Adsorption of Eu(III) on titanate nanotubes studied by a combination of batch and EXAFS technique[J]. Sci. China Chem., 55, 182-194(2012).

    [13] LIU X, WU J, ZHANG S W et al. Amidoxime functionalized hollow carbon spheres for efficient removal of uranium from wastewater[J]. ACS Sustain. Chem. Eng., 7, 10800-10807(2019).

    [14] AMBASHTA R D, SILLANPÄÄ M E. Membrane purification in radioactive waste management: a short review[J]. J. Environ. Radioact, 105, 76-84(2012).

    [15] KIM K W, BAEK Y J, LEE K Y et al. Treatment of radioactive waste seawater by coagulation-flocculation method using ferric hydroxide and poly acrylamide[J]. J. Nucl. Sci. Technol., 53, 439-450(2015).

    [16] WANG X, CHEN Z, TAN X et al. Effect of pH, humic acid and addition sequences on Eu(III) sorption onto γ-Al2O3 study by batch and time resolved laser fluorescence spectroscopy[J]. Chem. Eng. J., 287, 313-320(2016).

    [17] LIU X, SUN J, XU X et al. Adsorption and desorption of U(VI) on different-size graphene oxide[J]. Chem. Eng. J., 360, 941-950(2019).

    [18] WANG X, CHEN Y, WU Y. Diffusion of Eu(III) in compacted bentonite-effect of pH, solution concentration and humic acid[J]. Appl. Radiat. Isotopes, 60, 963-969(2004).

    [19] WANG X, XU D, CHEN L et al. Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study[J]. Appl. Radiat. Isotopes, 64, 414-421(2006).

    [20] TAN X L, XU D, CHEN C L et al. Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods[J]. Radiochim. Acta, 96, 23-29(2008).

    [21] CHEN Z, HE J, CHEN L et al. Sorption and desorption properties of Eu(III) on attapulgite[J]. J. Radioanal. Nucl. Chem., 307, 1093-1104(2016).

    [22] LIU X, MA R, WANG X et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review[J]. Environ. Pollut., 252, 62-73(2019).

    [23] FRIŠTÁK V, MICHÁLEKOVÁ-RICHVEISOVÁ B, VÍGLAŠOVÁ E et al. Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equilibrium study[J]. J. Iran Chem. Soc., 14, 521-530(2017).

    [24] HUANG Q, SONG S, CHEN Z et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review[J]. Biochar, 1, 45-73(2019).

    [25] INYANG MI, GAO B, YAO Y et al. A review of biochar at a low-cost adsorbent for aqueous heavy metal removal[J]. Crit. Rev. Env. Sci. Tec., 46, 406-433(2015).

    [26] KLOSS S, ZEHETNER F, DELLANTONIO A et al. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biocharproperties[J]. J. Environ. Qual., 41, 990-1000(2012).

    [27] KOŁODYŃSKA D, KRUKOWSKA J, THOMAS P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon[J]. Chem. Eng. J., 307, 353-363(2017).

    [28] SHENG G, LI J, SHAO D et al. Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids[J]. J. Hazard. Mater., 178, 333-340(2010).

    [29] KIM W K, SHIM T, KIM Y S et al. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technol., 138, 266-270(2013).

    [30] TONG X J, LI J Y, YUAN J H et al. Adsorption of Cu(II) by biochars generated from three crop straws[J]. Chem. Eng. J., 172, 828-834(2011).

    [31] ZONG P, WANG H, PAN H et al. Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution[J]. J. Radioanal. Nucl. Chem., 295, 1969-1979(2013).

    [32] DONG L, CHANG K, WANG L et al. Application of biochar derived from rice straw for the removal of Th(IV) from aqueous solution[J]. Sep. Sci. Technol., 53, 1511-1521(2018).

    [33] YANG S, SHENG G, MONTAVON G et al. Investigation of Eu(III) immobilization on γ-Al2O3 surfaces by combining batch technique and EXAFS analysis: role of contact time and humic acid[J]. Geochim. Cosmochim. Acta, 121, 84-104(2013).

    [34] CHEN C, WANG X, NAGATSU M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid[J]. Environ. Sci. Technol., 43, 2362-2367(2009).

    [35] TAN X, WANG X, GECKEIS H et al. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEMEDS, XPS, TRLFS and batch techniques[J]. Environ. Sci. Technol., 42, 6532-6537(2008).

    [36] PAN D, FAN Q, LI P et al. Sorption of Th(IV) on Na-bentonite: effects of pH, ionic strength, humic substances and temperature[J]. Chem. Eng. J., 172, 898-905(2011).

    [37] LI Y, SHENG G, SHENG J. Magnetite decorated graphene oxide for the highly efficient immobilization of Eu(III) from aqueous solution[J]. J. Mol. Liq., 199, 474-480(2014).

    [38] WANG X X, YANG S B, SHI W Q et al. Different interaction mechanisms of Eu(III) and 243Am(III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation[J]. Environ. Sci. Technol., 49, 11721-11728(2015).

    [39] WANG X, LU S, CHEN L et al. Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite-polyacrylamide composites[J]. J. Radioanal. Nucl. Chem., 306, 497-505(2015).

    [40] HO Y S. Review of second-order models for adsorption systems[J]. J. Hazard. Mater., 136, 681-689(2006).

    [41] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochem., 34, 451-465(1999).

    [42] IJAGBEMI C O, BAEK M H, KIM D S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions[J]. J. Hazard. Mater., 166, 538-546(2009).

    [43] YANG S, HU J, CHEN C et al. Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions[J]. Environ. Sci. Technol., 45, 3621-3627(2011).

    [44] BISWAS K, SAHA S K, GHOSH U C. Adsorption of fluoride from aqueous solution by a synthetic iron(III)-auminum(III) mixed oxide[J]. Ind. Eng. Chem. Res., 46, 5346-5356(2007).

    [45] LI J, ZHANG S, CHEN C et al. Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles[J]. ACS Appl. Mater. Interfaces, 4, 4991-5000(2012).

    Lijia DONG, Siying WU, Shengbo LI, Zuofu WEI, Guo YANG, Baowei HU. Sorption Behaviors and Mechanisms of Eu(III) on Rice Straw-derived Biochar[J]. Journal of Inorganic Materials, 2020, 35(3): 390
    Download Citation