• Photonics Research
  • Vol. 6, Issue 9, 908 (2018)
Nianqiang Li1、*, H. Susanto2, B. R. Cemlyn1, I. D. Henning1, and M. J. Adams1
Author Affiliations
  • 1School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
  • 2Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
  • show less
    DOI: 10.1364/PRJ.6.000908 Cite this Article Set citation alerts
    Nianqiang Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Modulation properties of solitary and optically injected phased-array semiconductor lasers[J]. Photonics Research, 2018, 6(9): 908 Copy Citation Text show less
    References

    [1] R. S. Tucker. High-speed modulation of semiconductor lasers. J. Lightwave Technol., 3, 1180-1192(1985).

    [2] X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, Y. Du. Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor. Laser Photon. Rev., 7, 818-829(2013).

    [3] Z. A. Sattar, K. A. Shore. Analysis of the direct modulation response of nanowire lasers. J. Lightwave Technol., 33, 3028-3033(2015).

    [4] H. Han, K. A. Shore. Zero crosstalk regime direct modulation of mutually coupled nanolasers. IEEE Photon. J., 9, 1503412(2017).

    [5] K. Ding, J. O. Diaz, D. Bimberg, C. Z. Ning. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects. Laser Photon. Rev., 9, 488-497(2015).

    [6] H. Dalir, F. Koyama. 29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity. Appl. Phys. Lett., 103, 091109(2013).

    [7] L. Fan, G. Q. Xia, X. Tang, T. Deng, J. J. Chen, X. D. Lin, Y. N. Li, Z. M. Wu. Tunable ultra-broadband microwave frequency combs generation based on a current modulated semiconductor laser under optical injection. IEEE Access, 5, 17764-17771(2017).

    [8] G. Morthier, R. Schatz, O. Kjebon. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J. Quantum Electron., 36, 1468-1475(2000).

    [9] F. L. Wang, X. W. Ma, Y. Z. Huang, Y. D. Yang, J. Y. Han, J. L. Xiao. Relative intensity noise in high-speed hybrid square-rectangular lasers. Photon. Res., 6, 193-197(2018).

    [10] M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, W. Rehbein. Improving the modulation bandwidth in semiconductor lasers by passive feedback. IEEE J. Sel. Top. Quantum Electron., 13, 136-142(2007).

    [11] T. B. Simpson, J. M. Liu. Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection. IEEE J. Quantum Electron., 32, 1456-1468(1996).

    [12] A. Murakami, K. Kawashima, K. Atsuki. Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection. IEEE J. Quantum Electron., 39, 1196-1204(2003).

    [13] N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, L. Xie. Enhanced modulation bandwidth of a Fabry–Perot semiconductor laser subject to light injection from another Fabry–Perot laser. IEEE J. Quantum Electron., 44, 528-535(2008).

    [14] E. K. Lau, H. K. Sung, M. C. Wu. Frequency response enhancement of optical injection-locked lasers. IEEE J. Quantum Electron., 44, 90-99(2008).

    [15] E. K. Lau, L. J. Wong, X. X. Zhao, Y. K. Chen, C. J. Chang-Hasnain, M. C. Wu. Bandwidth enhancement by master modulation of optical injection-locked lasers. J. Lightwave Technol., 26, 2584-2593(2008).

    [16] J. M. Sarraute, K. Schires, S. LaRochelle, F. Grillot. Enhancement of the modulation dynamics of an optically injection-locked semiconductor laser using gain lever. IEEE J. Sel. Top. Quantum Electron., 21, 1801408(2015).

    [17] J. M. Sarraute, K. Schires, S. LaRochelle, F. Grillot. Effects of gain nonlinearities in an optically injected gain lever semiconductor laser. Photon. Res., 5, 315-319(2017).

    [18] L. Chrostowski, W. Shi. Monolithic injection-locked high-speed semiconductor ring lasers. J. Lightwave Technol., 26, 3355-3362(2008).

    [19] L. Chrostowski, B. Faraji, W. Hofmann, M. C. Amann, S. Wieczorek, W. W. Chow. 40  GHz bandwidth and 64  GHz resonance frequency in injection-locked 1.55  μm VCSELs. IEEE J. Sel. Top. Quantum Electron., 13, 1200-1208(2007).

    [20] D. Parekh, X. X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, C. J. Chang-Hasnain. Greatly enhanced modulation response of injection-locked multimode VCSELs. Opt. Express, 16, 21582-21586(2008).

    [21] C. Wang, M. E. Chaibi, H. M. Huang, D. Erasme, P. Poole, J. Even, F. Grillot. Frequency-dependent linewidth enhancement factor of optical injection-locked quantum dot/dash lasers. Opt. Express, 23, 21761-21770(2015).

    [22] C. Wang, F. Grillot, V. I. Kovanis, J. D. Bodyfelt, J. Even. Modulation properties of optically injection-locked quantum cascade lasers. Opt. Lett., 38, 1975-1977(2013).

    [23] C. Z. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. B. Hao, Y. J. Han, L. Wang, H. T. Li. Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking. IEEE J. Sel. Top. Quantum Electron., 21, 1802008(2015).

    [24] S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, K. D. Choquette. 37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays. IEEE Photon. Technol. Lett., 27, 415-418(2015).

    [25] S. T. M. Fryslie, Z. H. Gao, H. Dave, B. J. Thompson, K. Lakomy, S. Y. Lin, P. J. Decker, D. K. McElfresh, J. E. Schutt-Ainé, K. D. Choquette. Modulation of coherently coupled phased photonic crystal vertical cavity laser arrays. IEEE J. Sel. Top. Quantum Electron., 23, 1700409(2017).

    [26] Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, J. L. Xiao. Modulation bandwidth enhancement for coupled twin-square microcavity lasers. Opt. Lett., 42, 3173-3176(2017).

    [27] G. A. Wilson, R. K. DeFreez, H. G. Winful. Modulation of phased-array semiconductor lasers at K-band frequencies. IEEE J. Quantum Electron., 27, 1696-1704(1991).

    [28] D. Botez, D. R. Scifres. Diode Laser Arrays(1994).

    [29] H. Altug, J. Vučković. Photonic crystal nanocavity array laser. Opt. Express, 13, 8819-8828(2005).

    [30] E. Kapon, J. Katz, A. Yariv. Supermode analysis of phase-locked arrays of semiconductor lasers. Opt. Lett., 9, 125-127(1984).

    [31] H. G. Winful, S. S. Wang. Stability of phase-locking in coupled semiconductor laser arrays. Appl. Phys. Lett., 53, 1894-1896(1988).

    [32] P. Ru, P. K. Jakobsen, J. V. Moloney, R. A. India. Generalized coupled-mode model for the multistripe index-guided laser arrays. J. Opt. Soc. Am. B, 10, 507-515(1993).

    [33] H. Erzgräber, S. Wieczorek, B. Krauskopf. Dynamics of two laterally coupled semiconductor lasers: strong- and weak-coupling theory. Phys. Rev. E, 78, 066201(2008).

    [34] Z. Gao, S. T. M. Fryslie, B. J. Thompson, P. Scott Carney, K. D. Choquette. Parity-time symmetry in coherently coupled vertical cavity laser arrays. Optica, 4, 323-329(2017).

    [35] J. Shena, J. Hizanidis, V. Kovanis, G. P. Tsironis. Turbulent chimeras in large semiconductor laser arrays. Sci. Rep., 7, 42116(2016).

    [36] Y. Kominis, V. Kovanis, T. Bountis. Controllable asymmetric phase-locked states of the fundamental active photonic dimer. Phys. Rev. A, 96, 043836(2017).

    [37] O. Hess, E. Scholl. Spatio-temporal dynamics in twin-stripe semiconductor lasers. Physica D, 70, 165-177(1994).

    [38] N. Blackbeard, H. Erzgräber, S. Wieczorek. Shear-induced bifurcations and chaos in models of three coupled lasers. SIAM J. Appl. Dyn. Syst., 10, 469-509(2011).

    [39] S. S. Wang, H. G. Winful. Dynamics of phase-locked semiconductor laser arrays. Appl. Phys. Lett., 52, 1774-1776(1988).

    [40] H. G. Winful, L. Rahman. Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers. Phys. Rev. Lett., 65, 1575-1578(1990).

    [41] H. Lamela, M. Leones, G. Carpintero, C. Simmendinger, O. Hess. Analysis of the dynamics behavior and short-pulse modulation scheme for laterally coupled diode lasers. IEEE J. Sel. Top. Quantum Electron., 7, 192-200(2001).

    [42] N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study. Opt. Express, 26, 4751-4765(2018).

    [43] M. J. Adams, N. Q. Li, B. R. Cemlyn, H. Susanto, I. D. Henning. Effects of detuning, gain-guiding and index antiguiding on the dynamics of two laterally-coupled semiconductor lasers. Phys. Rev. A, 95, 053869(2017).

    [44] R. Santos, H. Lamela. Experimental observation of chaotic dynamics in two coupled diode lasers through lateral model locking. IEEE J. Quantum Electron., 45, 1490-1494(2009).

    [45] L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres. Injection locking of coupledstripe diode laser arrays. Appl. Phys. Lett., 46, 236-238(1985).

    [46] C. M. Long, L. Mutter, B. Dwir, A. Mereuta, A. Caliman, A. Sirbu, V. Iakovlev, E. Kapon. Optical injection locking of transverse modes in 1.3-μm wavelength coupled-VCSEL arrays. Opt. Express, 22, 21137-21144(2014).

    [47] J. Mercier, M. McCall. Stability and dynamics of an injection-locked semiconductor laser array. Opt. Commun., 138, 200-210(1997).

    [48] N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Locking bandwidth of two laterally-coupled lasers subjected to optical injection. Sci. Rep., 8, 109(2018).

    [49] N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Injection locking of two laterally-coupled semiconductor laser arrays. Proc. SPIE, 10682, 106820Z(2018).

    [50] N. Q. Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers. Phys. Rev. A, 96, 013840(2017).

    Nianqiang Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Modulation properties of solitary and optically injected phased-array semiconductor lasers[J]. Photonics Research, 2018, 6(9): 908
    Download Citation