• Laser & Optoelectronics Progress
  • Vol. 50, Issue 11, 110001 (2013)
Liu Shuang1、2、* and Chen Danping1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop50.110001 Cite this Article Set citation alerts
    Liu Shuang, Chen Danping. Recent Progress on Fabrication Technique of Rare Earth Doped Silica Fiber Preform[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110001 Copy Citation Text show less
    References

    [1] E Snitzer, H Po, F Hakimi, et al.. Double clad, offset core Nd fiber laser[C]. Optical Fiber Sensors, 1988, PD5.

    [2] D Taverner, A Galvanauskas, D Harter, et al.. Generation of high-energy pulses using a large-mode-area erbium-doped fiber amplifier[C]. Conference on Lasers and Electro-Optics, 1996. 496-497.

    [3] Lou Qihong, Zhou Jun, Zhang Haibo, et al.. Recent progress of large core fiber lasers[J]. Chinese J Lasers, 2010, 37(9): 2235-2241.

    [4] J C Knight, T A Birks, R F Cregan, et al.. Large mode area photonic crystal fibre[J]. Electron Lett, 1998, 34(13): 1347-1348.

    [5] Zhou Qinling, Lu Xingqiang, Zhang Guang, et al.. Mode characteristics of a large mode area flattened-mode photonic crystal fiber[J]. Acta Optica Sinica, 2010, 30(5): 1497-1500.

    [6] Feng Suya, Wang Meng, Yu Chunlei, et al.. 260 μm core single-mode ultra-large mode area photonic crystal fiber[J]. Chinese J Lasers, 2012, 39(2): 0205004.

    [7] Yi Changshen, Zhang Peiqing, Dai Shixun, et al.. Research progress of large-mode area photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100001.

    [8] J E Townsend, S B Poole, D N Payne. Solution-doping technique for fabrication of rare-earth-doped optical fibres[J]. Electron Lett, 1987, 23(7): 329-331.

    [9] A S Webb, A J Boyland, R J Standish, et al.. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers[J]. J Non-Cryst Solids, 2010, 356(18-19): 848-851.

    [10] M Saha, A Pal, R Sen. Vapor phase chelate delivery technique for fabrication of rare earth doped optical fiber[C]. International Conference on Fibre Optics and Photonics, 2012, TPo.12.

    [11] A S Webb, A J Boyland, R J Standish, et al.. In-situ solution doping technique for novel geometry rare-earth doped fiber fabrication[C]. Conference on Lasers and Electro-Optics, 2010. JTuD35.

    [12] A J Boyland, A S Webb, S Yoo, et al.. Optical fiber fabrication using novel gas-phase deposition technique[J]. J Lightwave Technol, 2011, 29(6): 912-915.

    [13] A J Boyland, A S Webb, M P Kalita, et al.. Rare earth doped optical fiber fabrication using novel gas phase deposition technique[C]. Conference on Lasers and Electro-Optics, 2010. CThV7.

    [14] R P Tumminelli, B C Mccollum, E Snitzer. Fabrication of high-concentration rare-earth doped optical fibers using chelates[J]. J Lightwave Technology, 1990, 8(11): 1680-1683.

    [15] A A Malinin, A S Zlenko, U G Akhmetshin, et al.. Furnace chemical vapor deposition (FCVD) method for special optical fibers fabrication[C]. SPIE, 2011, 7934: 793418.

    [16] J J Montiel i Ponsoda, L Norin, C Ye, et al.. Ytterbium-doped fibers fabricated with atomic layer deposition method[J]. Opt Express, 2012, 20(22): 25085-25095.

    [17] J Wang, S Gray, D T Walton, et al.. Advanced vapor-doping, all-glass double-clad fibers[C]. SPIE, 2008, 6890: 689006.

    [18] T Simo, S Mikko, K Joona, et al.. The potential of direct nanoparticle deposition for the next generation of optical fibers[C]. SPIE, 2006, 6116: 61160G.

    [19] J J Koponen, L Petit, T Kokki, et al.. Progress in direct nanoparticle deposition for the development of the next generation fiber lasers[J]. Opt Eng, 2011, 50(11): 111605.

    [20] C Ye, J J Koponen, T Kokki, et al.. Confined-doped ytterbium fibers for beam quality improvement: fabrication and performance[C]. SPIE, 2012, 8237: 823737.

    [21] D Etissa, M Neff, S Pilz, et al.. Rare earth doped optical fiber fabrication by standard and sol-gel derived granulated oxides[C]. SPIE, 2012, 8426: 84261I.

    [22] U Pedrazza, V Romano, W Luthy. Yb3+ Al3+ sol-gel silica glass fiber laser[J]. Opt Mater, 2007, 29(7): 905-907.

    [23] B Assaad, H E Hamzaoui, I Fsaifes, et al.. A pure silica ytterbium-doped sol-gel-based fiber laser[J]. Laser Phys Lett, 2013, 10(5): 055106.

    [24] H E Hamzaoui, L Courthéoux, V N Nguyen, et al.. From porous silica xerogels to bulk optical glasses: the control of densification[J]. Materials Chemistry and Physics, 2010, 121(1-2): 83-88.

    [25] A Langner, G Schtz, M Such, et al.. A new material for high power laser fibers[C]. SPIE, 2008, 6873: 687311.

    [26] A Langner, M Such, G Schtz, et al.. Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica[C]. SPIE, 2010, 7580: 75802X.

    [27] M Leich, F Just, A Langner, et al.. Highly efficient Yb-doped silica fibers prepared by powder sinter technology[J]. Opt Lett, 2011, 36(9): 1557-1559.

    [28] A Langner, M Such, G Schtz, et al.. Design evolution, long term performance and application tests of extra large mode area (XLMA) fiber lasers[C]. SPIE, 2013, 8601: 86010G.

    [29] A Langner, T Kayser, G Schtz, et al.. Method for Producing Doped Quartz Glass[P]. U S Patent, 20100251771Al, 2010-10-07.

    [30] M Devautour, P Roy, S Férier, et al.. Nonchemical-vapor-deposition process for fabrication of highly efficient Yb-doped large core fibers[J]. Appl Opt, 2009, 48(31): G139-G142.

    [31] Y Li, J Huang, Y Li, et al.. Optical properties and laser output of heavily Yb-doped fiber prepared by sol-gel method and DC-RTA technique[J]. J Lightwave Technol, 2008, 26(18): 3256-3260.

    [32] Han Ying, Hou Lantian, Xia Changming, et al.. Investigation on the fabrication and luminescence characteristics of Yb3+ and Al3+ co-doped silicate glasses[J]. Acta Physica Sinica, 2011, 60(5): 054212.

    [33] C Xia, G Zhou, L Hou, et al.. Preparation of Yb3+-doped silica-based glass for high power laser applications[C]. Conference on Electronic and Mechanical Engineering and Information Technology, 2011, 2: 816-819.

    [34] Liu Jiantao, Zhou Guiyao, Xia Changming. Fabrication of Yb3+/Al3+ co-doped large-mode-area photonic crystal fiber based on powder sintering technology[J]. Acta Photonica Sinica, 2013, 42(5): 552-554.

    [35] Liu Shaojun. Investigation on Fabrication and Spectroscopic Properties of Yb3+-Doped Silica Glass and PCF Fiber by Sol-Gel Method[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2012.

    [36] Shaojun Liu, Haiyuan Li, Yongxing Tang, et al.. Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the sol-gel method[J]. Chin Opt Lett, 2012, 10(8): 081601.

    [37] S Wang, Z Li, C Yu, et al.. Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method[J]. Opt Mater, 2013, 35(9): 1752-1755.

    [38] W Li, Q Zhou, L Zhang, et al.. Watt-level ytterbium-doped silica glass fiber laser with a core made by sol-gel method[J]. Chin Opt Lett, 2013, 11(9): 091601.

    Liu Shuang, Chen Danping. Recent Progress on Fabrication Technique of Rare Earth Doped Silica Fiber Preform[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110001
    Download Citation