• Acta Optica Sinica
  • Vol. 43, Issue 18, 1899908 (2023)
Kai Qin*, Qin He, Hanshu Kang, Wei Hu, Fan Lu, and Cohen Jason
Author Affiliations
  • Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu , China
  • show less
    DOI: 10.3788/AOS231293 Cite this Article Set citation alerts
    Kai Qin, Qin He, Hanshu Kang, Wei Hu, Fan Lu, Cohen Jason. Progress and Prospect of Satellite Remote Sensing Research Applied to Methane Emissions from the Coal Industry[J]. Acta Optica Sinica, 2023, 43(18): 1899908 Copy Citation Text show less
    References

    [1] IEA. International energy agency[EB/OL]. https://iea.blob.core.windows.net/assets/efa961c4-ac83-4a9c-88ee-62c0bd9ff2e9/DrivingDownCoalMineMethaneEmissions_Chinese.pdf

    [2] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[R]([2023).

    [3] Prather M J, Holmes C D, Hsu J. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry[J]. Geophysical Research Letters, 39, L09803(2012).

    [4] Moore B III, Braswell B H. The lifetime of excess atmospheric carbon dioxide[J]. Global Biogeochemical Cycles, 8, 23-38(1994).

    [5] Archer D, Eby M, Brovkin V et al. Atmospheric lifetime of fossil fuel carbon dioxide[J]. Annual Review of Earth and Planetary Sciences, 37, 117-134(2009).

    [7] Abernethy S, O’Connor F M, Jones C D et al. Methane removal and the proportional reductions in surface temperature and ozone[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379, 20210104(2021).

    [8] Francoeur C B, McDonald B C, Gilman J B et al. Quantifying methane and ozone precursor emissions from oil and gas production regions across the contiguous US[J]. Environmental Science & Technology, 55, 9129-9139(2021).

    [10] Ma C M, Dai E F, Liu Y C et al. Methane fugitive emissions from coal mining and post-mining activities in China[J]. Resources Science, 42, 311-322(2020).

    [12] Saunois M, Bousquet P, Poulter B et al. The global methane budget 2000—2012[J]. Earth System Science Data, 8, 697-751(2016).

    [13] Miller S M, Michalak A M, Detmers R G et al. China′s coal mine methane regulations have not curbed growing emissions[J]. Nature Communications, 10, 303(2019).

    [14] Gao J L, Guan C H, Zhang B. China′s CH4 emissions from coal mining: a review of current bottom-up inventories[J]. Science of the Total Environment, 725, 138295(2020).

    [15] Deng J B. Research on inversion algorithm for average dry air mixing ratio of methane atmospheric column using short wave infrared satellite remote sensing[D](2015).

    [16] He Z, Li Z Q, Fan C et al. Satellite sensors and retrieval algorithms of atmospheric methane[J]. Acta Optica Sinica, 43, 1800002.

    [17] Zhang Y Z, Fang S X, Chen J M et al. Observed changes in China’s methane emissions linked to policy drivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2202742119(2022).

    [18] Varon D J, Jacob D J, Jervis D et al. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations[J]. Environmental Science & Technology, 54, 10246-10253(2020).

    [19] Yao L, Yang D X, Cai Z N et al. Present situation and development trend analysis of atmospheric methane observation satellites for China’s carbon neutrality and peak carbon dioxide emissions[J]. Chinese Journal of Atmospheric Sciences, 46, 1469-1483(2022).

    [20] Frankenberg C, Aben I, Bergamaschi P et al. Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: trends and variability[J]. Journal of Geophysical Research: Atmospheres, 116, JD014849(2011).

    [21] Schneising O, Burrows J P, Dickerson R R et al. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations[J]. Earth’s Future, 2, 548-558(2014).

    [22] Kort E A, Frankenberg C, Costigan K R et al. Four corners: the largest US methane anomaly viewed from space[J]. Geophysical Research Letters, 41, 6898-6903(2014).

    [23] Butz A, Guerlet S, Hasekamp O P et al. Using ocean-glint scattered sunlight as a diagnostic tool for satellite remote sensing of greenhouse gases[J]. Atmospheric Measurement Techniques, 6, 2509-2520(2013).

    [24] Zhang Y Z, Jacob D J, Lu X et al. Attribution of the accelerating increase in atmospheric methane during 2010—2018 by inverse analysis of GOSAT observations[J]. Atmospheric Chemistry and Physics, 21, 3643-3666(2021).

    [25] Qu Z, Jacob D J, Shen L et al. Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments[J]. Atmospheric Chemistry and Physics, 21, 14159-14175(2021).

    [26] Wang F J, Maksyutov S, Janardanan R et al. Interannual variability on methane emissions in monsoon Asia derived from GOSAT and surface observations[J]. Environmental Research Letters, 16, 024040(2021).

    [27] Sheng J X, Tunnicliffe R, Ganesan A L et al. Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area[J]. Environmental Research Letters, 16, 104018(2021).

    [28] Sadavarte P, Pandey S, Maasakkers J D et al. Methane emissions from superemitting coal mines in Australia quantified using TROPOMI satellite observations[J]. Environmental Science & Technology, 55, 16573-16580(2021).

    [29] Chen Z C, Jacob D J, Nesser H et al. Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations[J]. Atmospheric Chemistry and Physics, 22, 10809-10826(2022).

    [30] Tu Q S, Schneider M, Hase F et al. Quantifying CH4 emissions in hard coal mines from TROPOMI and IASI observations using the wind-assigned anomaly method[J]. Atmospheric Chemistry and Physics, 22, 9747-9765(2022).

    [31] Liang R, Zhang Y, Chen W et al. East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis[J]. Atmospheric Chemistry and Physics, 23, 8039-8057(2023).

    [32] Xu H Q, Sun F Q, Xu G Z. Cross comparison of radiance data between hyperspectral AHSI and multispectral VIMI sensors of Gaofen-5 satellite[J]. Geomatics and Information Science of Wuhan University, 46, 1032-1043(2021).

    [33] Irakulis-Loitxate I, Guanter L, Liu Y N et al. Satellite-based survey of extreme methane emissions in the Permian Basin[J]. Science Advances, 7, eabf4507(2021).

    [34] Li F, Sun S W, Zhang Y G et al. Mapping methane super-emitters in China and United States with GF5-02 hyperspectral imaging spectrometer[J/OL]. National Remote Sensing Bulletin, 1-15(2023). https://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20232453/

    [35] Nesme N, Marion R, Lezeaux O et al. Joint use of in-scene background radiance estimation and optimal estimation methods for quantifying methane emissions using PRISMA hyperspectral satellite data: application to the korpezhe industrial site[J]. Remote Sensing, 13, 4992(2021).

    [36] Guanter L, Irakulis-Loitxate I, Gorroño J et al. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer[J]. Remote Sensing of Environment, 265, 112671(2021).

    [37] Guanter L, Kaufmann H, Segl K et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation[J]. Remote Sensing, 7, 8830-8857(2015).

    [38] Cusworth D H, Jacob D J, Varon D J et al. Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space[J]. Atmospheric Measurement Techniques, 12, 5655-5668(2019).

    [39] Varon D J, Jervis D, McKeever J et al. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations[J]. Atmospheric Measurement Techniques, 14, 2771-2785(2021).

    [40] Ehret T, de Truchis A, Mazzolini M et al. Global tracking and quantification of oil and gas methane emissions from recurrent Sentinel-2 imagery[J]. Environmental Science & Technology, 56, 10517-10529(2022).

    [41] Irakulis-Loitxate I, Gorroño J, Zavala-Araiza D et al. Satellites detect a methane ultra-emission event from an offshore platform in the gulf of Mexico[J]. Environmental Science & Technology Letters, 9, 520-525(2022).

    [42] Sánchez-García E, Gorroño J, Irakulis-Loitxate I et al. Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite[J]. Atmospheric Measurement Techniques, 15, 1657-1674(2022).

    [43] Rodgers C D[M]. Inverse methods for atmospheric sounding: theory and practice(2000).

    [44] Platt U, Perner D, Pätz H W. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption[J]. Journal of Geophysical Research: Oceans, 84, 6329-6335(1979).

    [45] Swinehart D F. The Beer-Lambert law[J]. Journal of Chemical Education, 39, 333(1962).

    [46] Frankenberg C, Platt U, Wagner T. Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT[J]. Atmospheric Chemistry and Physics, 5, 9-22(2005).

    [47] Buchwitz M, Rozanov V V, Burrows J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances[J]. Journal of Geophysical Research: Atmospheres, 105, 15231-15245(2000).

    [48] Schneising O, Buchwitz M, Reuter M et al. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor[J]. Atmospheric Measurement Techniques, 12, 6771-6802(2019).

    [49] Thorpe A K, Frankenberg C, Roberts D A. Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS[J]. Atmospheric Measurement Techniques, 7, 491-506(2014).

    [50] Jacob D J, Turner A J, Maasakkers J D et al. Satellite observations of atmospheric methane and their value for quantifying methane emissions[J]. Atmospheric Chemistry and Physics, 16, 14371-14396(2016).

    [51] Parker R J, Webb A, Boesch H et al. A decade of GOSAT Proxy satellite CH4 observations[J]. Earth System Science Data, 12, 3383-3412(2020).

    [52] Parker R J, Boesch H, Byckling K et al. Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties[J]. Atmospheric Measurement Techniques, 8, 4785-4801(2015).

    [53] Buchwitz M, Reuter M, Schneising O et al. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets[J]. Remote Sensing of Environment, 162, 344-362(2015).

    [54] Schepers D, Guerlet S, Butz A et al. Methane retrievals from Greenhouse Gases Observing Satellite (GOSAT) shortwave infrared measurements: performance comparison of proxy and physics retrieval algorithms[J]. Journal of Geophysical Research: Atmospheres, 117, D017549(2012).

    [55] Hu H L, Landgraf J, Detmers R et al. Toward global mapping of methane with TROPOMI: first results and intersatellite comparison to GOSAT[J]. Geophysical Research Letters, 45, 3682-3689(2018).

    [56] Hu H L, Hasekamp O, Butz A et al. The operational methane retrieval algorithm for TROPOMI[J]. Atmospheric Measurement Techniques, 9, 5423-5440(2016).

    [57] Yoshida Y, Kikuchi N, Morino I et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 6, 1533-1547(2013).

    [58] Liu Y Q, Qin K, Cohen J et al. Distribution characteristics of methane in southeastern Shanxi coal mining area based on eddy current and navigation observation[J]. Journal of China Coal Society, 47, 4395-4402(2022).

    [59] Toon G, Blavier J F, Washenfelder R et al. Total column carbon observing network (TCCON)[C], JMA3(2009).

    [60] Thompson D R, Leifer I, Bovensmann H et al. Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane[J]. Atmospheric Measurement Techniques, 8, 4383-4397(2015).

    [61] Foote M D, Dennison P E, Thorpe A K et al. Fast and accurate retrieval of methane concentration from imaging spectrometer data using sparsity prior[J]. IEEE Transactions on Geoscience and Remote Sensing, 58, 6480-6492(2020).

    [62] Foote M D, Dennison P E, Sullivan P R et al. Impact of scene-specific enhancement spectra on matched filter greenhouse gas retrievals from imaging spectroscopy[J]. Remote Sensing of Environment, 264, 112574(2021).

    [63] Jacob D J, Varon D J, Cusworth D H et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane[J]. Atmospheric Chemistry and Physics, 22, 9617-9646(2022).

    [64] Huang Y X, Natraj V, Zeng Z C et al. Quantifying the impact of aerosol scattering on the retrieval of methane from airborne remote sensing measurements[J]. Atmospheric Measurement Techniques, 13, 6755-6769(2020).

    [65] Kumar S, Torres C, Ulutan O et al. Deep remote sensing methods for methane detection in overhead hyperspectral imagery[C], 1765-1774(2020).

    [66] Pei Z P, Han G, Mao H Q et al. Improving quantification of methane point source emissions from imaging spectroscopy[J]. Remote Sensing of Environment, 295, 113652(2023).

    [67] Schaum A. A uniformly most powerful detector of gas plumes against a cluttered background[J]. Remote Sensing of Environment, 260, 112443(2021).

    [68] Duren R M, Thorpe A K, Foster K T et al. California’s methane super-emitters[J]. Nature, 575, 180-184(2019).

    [69] Brasseur G P, Jacob D J[M]. Modeling of atmospheric chemistry(2017).

    [70] Whalen S C, Reeburgh W S. Consumption of atmospheric methane by tundra soils[J]. Nature, 346, 160-162(1990).

    [71] Zhang D Y, Liao H. Advances in the research on sources and sinks of CH4 and observations and simulations of CH4 concentrations[J]. Advances in Meteorological Science and Technology, 5, 40-47(2015).

    [72] Bloom A A, Bowman K W, Lee M et al. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0)[J]. Geoscientific Model Development, 10, 2141-2156(2017).

    [73] Scarpelli T R, Jacob D J, Maasakkers J D et al. A global gridded (0.1° × 0.1°) inventory of methane emissions from oil, gas, and coal exploitation based on national reports to the United Nations Framework Convention on Climate Change[J]. Earth System Science Data, 12, 563-575(2020).

    [74] Wecht K J, Jacob D J, Frankenberg C et al. Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data[J]. Journal of Geophysical Research: Atmospheres, 119, 7741-7756(2014).

    [75] Lu X A, Jacob D J, Zhang Y Z et al. Global methane budget and trend, 2010—2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations[J]. Atmospheric Chemistry and Physics, 21, 4637-4657(2021).

    [76] Shen L, Zavala-Araiza D, Gautam R et al. Unravelling a large methane emission discrepancy in Mexico using satellite observations[J]. Remote Sensing of Environment, 260, 112461(2021).

    [77] Miller S M, Saibaba A K, Trudeau M E et al. Geostatistical inverse modeling with very large datasets: an example from the Orbiting Carbon Observatory 2 (OCO-2) satellite[J]. Geoscientific Model Development, 13, 1771-1785(2020).

    [78] Yuan B, Kaser L, Karl T et al. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions[J]. Journal of Geophysical Research: Atmospheres, 120, 6271-6289(2015).

    [79] Cusworth D H, Jacob D J, Sheng J X et al. Detecting high-emitting methane sources in oil/gas fields using satellite observations[J]. Atmospheric Chemistry and Physics, 18, 16885-16896(2018).

    [80] Cho T, Chung J, Miller S M et al. Computationally efficient methods for large-scale atmospheric inverse modeling[J]. Geoscientific Model Development, 15, 5547-5565(2022).

    [81] Bousserez N, Henze D K, Perkins A et al. Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport model[J]. Quarterly Journal of the Royal Meteorological Society, 141, 1906-1921(2015).

    [82] Varon D J, Jacob D J, Hmiel B et al. Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations[J]. Atmospheric Chemistry and Physics, 23, 7503-7520(2023).

    [83] Feng L A, Palmer P I, Bösch H et al. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4:  XCO2 retrievals, 2010—2014[J]. Atmospheric Chemistry and Physics, 17, 4781-4797(2017).

    [84] Western L M, Ramsden A E, Ganesan A L et al. Estimates of North African methane emissions from 2010 to 2017 using GOSAT observations[J]. Environmental Science & Technology Letters, 8, 626-632(2021).

    [85] Beirle S, Borger C, Dörner S et al. Pinpointing nitrogen oxide emissions from space[J]. Science Advances, 5, eaax9800(2019).

    [86] Beirle S, Boersma K F, Platt U et al. Megacity emissions and lifetimes of nitrogen oxides probed from space[J]. Science, 333, 1737-1739(2011).

    [87] Tu Q S, Hase F, Schneider M et al. Quantification of CH4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI[J]. Atmospheric Chemistry and Physics, 22, 295-317(2022).

    [88] Schneising O, Buchwitz M, Reuter M et al. Remote sensing of methane leakage from natural gas and petroleum systems revisited[J]. Atmospheric Chemistry and Physics, 20, 9169-9182(2020).

    [89] Liu M Y, van der A R, van Weele M et al. A new divergence method to quantify methane emissions using observations of Sentinel-5P TROPOMI[J]. Geophysical Research Letters, 48, e2021GL094151(2021).

    [90] Li X, Cohen J B, Qin K et al. Remotely sensed and surface measurement derived mass-conserving inversion of daily high-resolution NOx emissions and inferred combustion technologies in energy rich Northern China[EB/OL]. https://egusphere.copernicus.org/preprints/2023/egusphere-2023-2/

    [91] Qin K, Lu L X, Liu J et al. Model-free daily inversion of NOx emissions using TROPOMI (MCMFE-NOx) and its uncertainty: declining regulated emissions and growth of new sources[J]. Remote Sensing of Environment, 295, 113720(2023).

    [92] Matheou G, Bowman K W. A recycling method for the large-eddy simulation of plumes in the atmospheric boundary layer[J]. Environmental Fluid Mechanics, 16, 69-85(2016).

    [93] Jongaramrungruang S, Frankenberg C, Matheou G et al. Towards accurate methane point-source quantification from high-resolution 2-D plume imagery[J]. Atmospheric Measurement Techniques, 12, 6667-6681(2019).

    [94] Chulakadabba A, Sargent M, Lauvaux T et al. Methane point source quantification using MethaneAIR: a new airborne imaging spectrometer[EB/OL]. https://egusphere.copernicus.org/preprints/2023/egusphere-2023-822/egusphere-2023-822-supplement.pdf

    [95] Hajny K D, Salmon O E, Rudek J et al. Observations of methane emissions from natural gas-fired power plants[J]. Environmental Science & Technology, 53, 8976-8984(2019).

    [96] Krings T, Gerilowski K, Buchwitz M et al. MAMAP–a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates[J]. Atmospheric Measurement Techniques, 4, 1735-1758(2011).

    [97] Frankenberg C, Thorpe A K, Thompson D R et al. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 9734-9739(2016).

    [98] Varon D J, Jacob D J, McKeever J et al. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes[J]. Atmospheric Measurement Techniques, 11, 5673-5686(2018).

    [99] Ding G F, Lü Z F, Cao J C et al. Analysis on status quo of development and utilization of large-scale coal bases in China[J]. China Energy and Environmental Protection, 42, 107-110, 120(2020).

    [100] Jongaramrungruang S, Thorpe A K, Matheou G et al. MethaNet-an AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery[J]. Remote Sensing of Environment, 269, 112809(2022).

    [101] Omara M, Zavala-Araiza D, Lyon D R et al. Methane emissions from US low production oil and natural gas well sites[J]. Nature Communications, 13, 2085(2022).

    [102] Lauvaux T, Giron C, Mazzolini M et al. Global assessment of oil and gas methane ultra-emitters[J]. Science, 375, 557-561(2022).

    Kai Qin, Qin He, Hanshu Kang, Wei Hu, Fan Lu, Cohen Jason. Progress and Prospect of Satellite Remote Sensing Research Applied to Methane Emissions from the Coal Industry[J]. Acta Optica Sinica, 2023, 43(18): 1899908
    Download Citation