• Infrared and Laser Engineering
  • Vol. 45, Issue 10, 1003001 (2016)
Shi Wei1、2, Fu Shijie1, Fang Qiang3、4, Sheng Quan1, Zhang Haiwei1, Bai Xiaolei1, Shi Guannan1, Li Jinhui3、4, and Yao Jianquan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3788/irla201645.1003001 Cite this Article
    Shi Wei, Fu Shijie, Fang Qiang, Sheng Quan, Zhang Haiwei, Bai Xiaolei, Shi Guannan, Li Jinhui, Yao Jianquan. Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 2016, 45(10): 1003001 Copy Citation Text show less
    References

    [2] Shi W, Petersen E B, Nguyen D T, et al. 220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers [J]. Optics Letters, 2011, 36(18): 3575-3577.

    [3] Bai X, Sheng Q, Zhang H, et al. High-power all-fiber single-frequency Erbium-Ytterbium co-doped fiber master oscillator power amplifier [J]. IEEE Photonics Journal, 2015, 7(6): 1-6.

    [4] Qi G, Xiong S, Liang X, et al. High-performance and narrow line-width nanosecond pulse laser amplifier for weak signal [J]. Infrared and Laser Engineering, 2015, 44(11): 3234-3237.

    [5] Zyskind J L, Mizrahi V, DiGiovanni D J, et al. Short single frequency erbium-doped fibre laser [J]. Electronics Letters, 1992, 28(15): 1385-1387.

    [6] Ball G A, Glenn W H. Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors [J]. Journal of Lightwave Technology, 1992, 10(10): 1338-1343.

    [7] Spiegelberg C, Geng J, Hu Y, et al. Compact 100 mW fiber laser with 2 kHz linewidth[C]//Optical Fiber Communication Conference, OSA, 2003, PD45.

    [8] Kaneda Y, Spiegelberg C, Geng J, et al. 200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser[C]//Conference on Lasers and Electro-Optics, OSA, 2004, CThO3.

    [9] Geng J, Wu J, Jiang S, et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm [J]. Optics Letters, 2007, 32(4): 355-357.

    [10] Pan Z, Cai H, Meng L, et al. Single-frequency phosphate glass fiber laser with 100-mW output power at 1535 nm and its polarization characteristics[J]. Chinese Optics Letters, 2010, 8(1): 52-54.

    [11] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm [J]. Optics Express, 2010, 18(2): 1249-1254.

    [12] Xu S, Yang Z, Zhang W, et al. 400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser [J]. Optics Letters, 2011, 36(18): 3708-3710.

    [13] Qi Y, Shanhui X, Can L, et al. A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95 μm [J]. Chinese Physics Letters, 2015, 32(9): 094206.

    [14] Wang J, Li W. Method of fusion splicing silica fiber with low-temperature multi-component glass fiber: US, 6866429 [P]. 2005-03-15.

    [15] Li H, Lousteau J, MacPherson W N, et al. Thermal sensitivity of tellurite and germanate optical fibers [J]. Optics Express, 2007, 15(14): 8857-8863.

    [16] Fang Q, Xu Y, Fu S, et al. Single-frequency distributed Bragg reflector Nd doped silica fiber laser at 930 nm [J]. Optics Letters, 2016, 41(8): 1829-1832.

    [17] Zhu X, Shi W, Zong J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser [J]. Optics Letters, 2012, 37(20): 4167-4169.

    [18] Liu Y, Cao J, Xiao H, et al. Study on the output properties of fiber lasers operating near 980 nm [J]. Journal of the Optical Society of America B, 2013, 30(2): 266-274.

    [19] Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[Invited][J]. Applied Optics, 2014, 53(28): 6554-6568.

    [20] Guan W, Marciante J R. Single-polarization, single-frequency, 2 cm ytterbium-doped fibre laser [J]. Electronics Letters, 2007, 43(10): 558-559.

    [21] Fang Q, Xu Y, Shijie Fu, et al. Single frequency distributed Bragg reflector Nd-doped silica fiber laser at 930 nm [J].Optics Letters, 2016, 41(8): 1829-1832.

    [22] Fu S, Shi W, Lin J, et al. Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber [J]. Optics Letters, 2015, 40(22): 5283-5286.

    [23] Barmenkov Y O, Zalvidea D, Torres-Peiró S, et al. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings[J]. Optics Express, 2006, 14(14): 6394-6399.

    CLP Journals

    [1] Junxiang Zhang, Wei Shi, Chaodu Shi, Qiang Fang, Shijie Fu, Quan Sheng, Xiushan Zhu, Nasser Peyghambarian, Jianquan Yao. Research of novel highly thulium-doped silicate glass fiber and related fiber lasers[J]. Infrared and Laser Engineering, 2021, 50(9): 20200424

    [2] Wei Shi, Shijie Fu, Quan Sheng, Chaodu Shi, Junxiang Zhang, Lu Zhang, Jianquan Yao. Research progress on high-performance single-frequency fiber lasers: 2017-2021 (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210905

    [3] Yajun Wang, Li Gao, Xiaoli Zhang, Yaohui Zheng. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201073

    [4] Xiangrui Meng, Han Wen, Haowei Chen, Bo Sun, Baole Lu, Jintao Bai. Wavelength switchable and tunable single-frequency narrow linewidth ytterbium doped fiber laser (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220325

    [5] Bai Xiaolei, Sheng Quan, Zhang Haiwei, Fu Shijie, Shi Wei, Yao Jianquan. Influence of seed power and gain fiber temperature on output linewidth in single-frequency EYDFA[J]. Infrared and Laser Engineering, 2018, 47(10): 1005004

    Shi Wei, Fu Shijie, Fang Qiang, Sheng Quan, Zhang Haiwei, Bai Xiaolei, Shi Guannan, Li Jinhui, Yao Jianquan. Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 2016, 45(10): 1003001
    Download Citation