• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 056001 (2023)
Wayesh Qarony1、†, Ahmed S. Mayet1, Ekaterina Ponizovskaya Devine2, Soroush Ghandiparsi1, Cesar Bartolo-Perez1, Ahasan Ahamed1, Amita Rawat1, Hasina H. Mamtaz1, Toshishige Yamada2、3, Shih-Yuan Wang2, and M. Saif Islam1、*
Author Affiliations
  • 1University of California, Davis, Department of Electrical and Computer Engineering, Davis, California, United States
  • 2W&WSens Devices, Inc., Los Altos, California, United States
  • 3University of California, Baskin School of Engineering, Department of Electrical and Computer Engineering, Santa Cruz, California, United States
  • show less
    DOI: 10.1117/1.APN.2.5.056001 Cite this Article Set citation alerts
    Wayesh Qarony, Ahmed S. Mayet, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Cesar Bartolo-Perez, Ahasan Ahamed, Amita Rawat, Hasina H. Mamtaz, Toshishige Yamada, Shih-Yuan Wang, M. Saif Islam. Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures[J]. Advanced Photonics Nexus, 2023, 2(5): 056001 Copy Citation Text show less
    References

    [1] T. Mueller, F. Xia, P. Avouris. Graphene photodetectors for high-speed optical communications. Nat. Photonics, 4, 297-301(2010).

    [2] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [3] H. Wang et al. Optical interconnection networks for high-performance computing systems. Rep. Prog. Phys., 75, 046402(2012).

    [4] J. I. J. Wang et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater., 21, 398-403(2022).

    [5] R. M. C. Andrade et al. What changes from ubiquitous computing to internet of things in interaction evaluation?. Lect. Notes Comput. Sci., 10291, 3-21(2017).

    [6] B. Xu et al. Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Trans. Ind. Inf., 10, 1578-1586(2014).

    [7] A. Kirmani et al. First-photon imaging. Science., 343, 58-61(2014).

    [8] G. Allen, T. Chan. Artificial Intelligence and National Security(2017).

    [9] G. A. Kaissis et al. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell., 2, 305-311(2020).

    [10] X. Michalet et al. Development of new photon-counting detectors for single-molecule fluorescence microscopy. Philos. Trans. R. Soc. B Biol. Sci., 368, 20120035(2013).

    [11] J. Unger et al. Real-time diagnosis and visualization of tumor margins in excised breast specimens using fluorescence lifetime imaging and machine learning. Biomed. Opt. Express, 11, 1216-1230(2020).

    [12] Y. Sun et al. Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging. Sci. Adv., 4, eaau5603(2018).

    [13] A. Dargys, J. Kundrotas. Handbook on Physical Properties of Ge, Si, GaAs and InP(1994).

    [14] C. Schinke et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv., 5, 067168(2015).

    [15] T. Tiedje et al. Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices, 31, 711-716(1984).

    [16] P. Y. Yu, M. Cardona. Fundamentals of Semiconductors(1999).

    [17] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [18] M. Veldhorst et al. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun., 8, 1-8(2017).

    [19] E. Yablonovitch, G. D. Cody. Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices, 29, 300-305(1982).

    [20] E. Garnett, P. Yang. Light trapping in silicon nanowire solar cells. Nano Lett., 10, 1082-1087(2010).

    [21] A. Ingenito, O. Isabella, M. Zeman. Experimental demonstration of 4n2 classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector. ACS Photonics, 1, 270-278(2014).

    [22] I. Schnitzer et al. 30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes. Appl. Phys. Lett., 63, 2174(1998).

    [23] T. Tiedje et al. Photoconductivity enhancement by light trapping in rough amorphous silicon. Appl. Phys. Lett., 42, 712(1998).

    [24] S. Manzoor et al. Visualizing light trapping within textured silicon solar cells. J. Appl. Phys., 127, 063104(2020).

    [25] S. B. Mallick, M. Agrawal, P. Peumans. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express, 18, 5691-5706(2010).

    [26] N. Afifah Yahaya et al. Characterization of light absorption in thin-film silicon with periodic nanohole arrays. Opt. Express, 21, 5924-5930(2013).

    [27] K. X. Wang et al. Light trapping in photonic crystals. Energy Environ. Sci., 7, 2725-2738(2014).

    [28] Z. Yu, A. Raman, S. Fan. Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. U. S. A., 107, 17491-17496(2010).

    [29] J. M. Gee. Optically enhanced absorption in thin silicon layers using photonic crystals, 150-153(2002).

    [30] A. A. Asatryan et al. Mode-based analysis of silicon nanohole arrays for photovoltaic applications. Opt. Express, 22, A1343-A1354(2014).

    [31] P. Bermel et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. Opt. Express, 15, 16986-17000(2007).

    [32] D. Zhou, R. Biswas. Photonic crystal enhanced light-trapping in thin film solar cells. J. Appl. Phys., 103, 093102(2008).

    [33] D. Pacifici et al. How much can guided modes enhance absorption in thin solar cells?. Opt. Express, 17, 20975-20990(2009).

    [34] S. Pillai et al. Surface plasmon enhanced silicon solar cells. J. Appl. Phys., 101, 093105(2007).

    [35] T. Ishi et al. Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys., 44, L364(2005).

    [36] D. Madzharov, R. Dewan, D. Knipp. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells. Opt. Express, 19, A95(2011).

    [37] R. Bergmann et al. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express, 18, 5691-5706(2010).

    [38] S. Bhattacharya, S. John. Beyond 30% conversion efficiency in silicon solar cells: a numerical demonstration. Sci. Rep., 9, 1-15(2019).

    [39] K. Yoshikawa et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells, 173, 37-42(2017).

    [40] J. Dréon et al. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 70, 104495(2020).

    [41] A. K. Katiyar et al. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci. Adv., 6, 576-605(2020).

    [42] G. Konstantatos, E. H. Sargent. Nanostructured materials for photon detection. Nat. Nanotechnol., 5, 391-400(2010).

    [43] E. Özbay et al. Fabrication of high-speed resonant cavity enhanced Schottky photodiodes. IEEE Photonics Technol. Lett., 9, 672-674(1997).

    [44] W. K. Huang, Y. C. Liu, Y. M. Hsin. A high-speed and high-responsivity photodiode in standard CMOS technology. IEEE Photonics Technol. Lett., 19, 197-199(2007).

    [45] Y. Gao et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics, 11, 301-308(2017).

    [46] H. Cansizoglu et al. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication. — Part I. Enhancing photon-material interactions via low-dimensional structures. IEEE Trans. Electron Devices, 65, 372-381(2018).

    [47] H. Cansizoglu et al. Dramatically enhanced efficiency in ultra-fast silicon MSM photodiodes via light trapping structures. IEEE Photonics Technol. Lett., 31, 1619-1622(2019).

    [48] K. Zang et al. Silicon single-photon avalanche diodes with nano-structured light trapping. Nat. Commun., 8, 1-6(2017).

    [49] D. Chen et al. Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications. Nat. Photonics, 17, 594-600(2023).

    [50] M. L. Hsieh et al. Experimental demonstration of broadband solar absorption beyond the Lambertian limit in certain thin silicon photonic crystals. Sci. Rep., 10, 11857(2020).

    [51] C. Bartolo-Perez et al. Maximizing absorption in photon‐trapping ultrafast silicon photodetectors. Adv. Photonics Res., 2, 2000190(2021).

    [52] S. Salahuddin, K. Ni, S. Datta. The era of hyper-scaling in electronics. Nat. Electron., 1, 442-450(2018).

    [53] R. Maurand et al. A CMOS silicon spin qubit. Nat. Commun., 7, 1-6(2016).

    [54] T. G. Mayerhöfer, S. Pahlow, J. Popp. The Bouguer–Beer–Lambert law: shining light on the obscure. ChemPhysChem, 21, 2029-2046(2020).

    [55] A. Beer. Grundriss des photometrischen Calcüles(1854).

    [56] S. Adachi. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1xAs, and In1xGaxAsyP1y. J. Appl. Phys., 66, 6030(1998). https://doi.org/10.1063/1.343580

    [57] E. D. Palik. Handbook of Optical Constants of Solids, 1, xvii-xviii(1985).

    [58] S. Mokkapati, K. R. Catchpole. Nanophotonic light trapping in solar cells. J. Appl. Phys., 112, 101101(2012).

    [59] D. M. Callahan, J. N. Munday, H. A. Atwater. Solar cell light trapping beyond the ray optic limit. Nano Lett., 12, 214-218(2012).

    [60] S. Radovanović, A. J. Annema, B. Nauta. A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication. IEEE J. Solid-State Circuits, 40, 1706-1717(2005).

    [61] M. K. Emsley, O. Dosunmu, M. S. Ünlü. High-speed resonant-cavity-enhanced silicon photodetectors on reflecting silicon-on-insulator substrates. IEEE Photonics Technol. Lett., 14, 519-521(2002).

    [62] M. S. Ünlü et al. High-speed Si resonant cavity enhanced photodetectors and arrays. J. Vac. Sci. Technol. A, 22, 781(2004).

    [63] R. T. Chen et al. Fully embedded board-level guided-wave optoelectronic interconnects. Proc. IEEE, 88, 780-793(2000).

    [64] H. Shigeta et al. Enhancement of photocurrent in ultrathin active-layer photodetecting devices with photonic crystals. Appl. Phys. Lett., 101, 161103(2012).

    [65] B. Yang et al. 10-Gb/s all-silicon optical receiver. IEEE Photonics Technol. Lett., 15, 745-747(2003).

    [66] R. Swoboda, H. Zimmermann. 11 Gb/s monolithically integrated silicon optical receiver for 850nm wavelength(2006).

    [67] S. Radovanovic et al. An integrated 12.5-Gb/s optoelectronic receiver with a silicon avalanche photodetector in standard SiGe BiCMOS technology. Opt. Express, 20, 28153-28162(2012).

    [68] S. M. Csutak et al. Integrated silicon optical receiver with avalanche photodiode. IEE Proc. Optoelectron., 150, 235-237(2003).

    [69] M. Atef, A. Polzer, H. Zimmermann. Avalanche double photodiode in 40-nm standard CMOS technology. IEEE J. Quantum Electron., 49, 350-356(2013).

    [70] M.-J. Lee et al. A fully-integrated 12.5-Gb/s 850-nm CMOS optical receiver based on a spatially-modulated avalanche photodetector. Opt. Express, 22, 2511-2518(2014).

    [71] J. S. Youn et al. 10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector. IEEE J. Quantum Electron., 48, 229-236(2012).

    [72] M.-J. Lee et al. A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product. Opt. Express, 18, 24189-24194(2010).

    [73] A. C. Ulku et al. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron., 25, 6801212(2019).

    [74] D. Stoppa et al. Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements. IEEE Sens. J., 9, 1084-1090(2009).

    [75] C. Li et al. Grating-enabled high-speed high-efficiency surface-illuminated silicon photodiodes. Opt. Express, 29, 3458-3464(2021).

    [76] B. Wang et al. A low-voltage Si-Ge avalanche photodiode for high-speed and energy efficient silicon photonic links. J. Light. Technol., 38, 3156-3163(2020).

    [77] T. Li et al. Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode. NPJ 2D Mater. Appl., 2, 1-8(2018).

    Wayesh Qarony, Ahmed S. Mayet, Ekaterina Ponizovskaya Devine, Soroush Ghandiparsi, Cesar Bartolo-Perez, Ahasan Ahamed, Amita Rawat, Hasina H. Mamtaz, Toshishige Yamada, Shih-Yuan Wang, M. Saif Islam. Achieving higher photoabsorption than group III-V semiconductors in ultrafast thin silicon photodetectors with integrated photon-trapping surface structures[J]. Advanced Photonics Nexus, 2023, 2(5): 056001
    Download Citation