• Photonics Research
  • Vol. 9, Issue 12, 2309 (2021)
Mantas Žurauskas1、2, Aneesh Alex2、3, Jaena Park1, Steve R. Hood2、4, and Stephen A. Boppart1、2、5、6、7、8、*
Author Affiliations
  • 1Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 2GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 3GlaxoSmithKline, Collegeville, Pennsylvania 19426, USA
  • 4GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, UK
  • 5Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 6Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 7Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • 8Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
  • show less
    DOI: 10.1364/PRJ.434236 Cite this Article Set citation alerts
    Mantas Žurauskas, Aneesh Alex, Jaena Park, Steve R. Hood, Stephen A. Boppart. Fluorescent nanodiamonds for characterization of nonlinear microscopy systems[J]. Photonics Research, 2021, 9(12): 2309 Copy Citation Text show less
    References

    [1] N. Mazumder, N. K. Balla, G.-Y. Zhuo, Y. V. Kistenev, R. Kumar, F.-J. Kao, S. Brasselet, V. V. Nikolaev, N. A. Krivova. Label-free non-linear multimodal optical microscopy-basics, development, and applications. Front. Phys., 7, 170(2019).

    [2] S. You, R. Barkalifa, E. J. Chaney, H. Tu, J. Park, J. E. Sorrells, Y. Sun, Y.-Z. Liu, L. Yang, D. Z. Chen, M. Marjanovic, S. Sinha, S. A. Boppart. Label-free visualization and characterization of extracellular vesicles in breast cancer. Proc. Natl. Acad. Sci. USA, 116, 24012-24018(2019).

    [3] M. Žurauskas, O. Barnstedt, M. Frade-Rodriguez, S. Waddell, M. J. Booth. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity. Biomed. Opt. Express, 8, 4369-4379(2017).

    [4] Y.-Z. Liu, C. Renteria, C. D. Courtney, B. Ibrahim, S. You, E. J. Chaney, R. Barkalifa, R. R. Iyer, M. Žurauskas, H. Tu, D. Llano, C. A. Christian-Hinman, S. A. Boppart. Simultaneous two-photon activation and imaging of neural activity based on spectral–temporal modulation of supercontinuum light. Neurophotonics, 7, 045007(2020).

    [5] A. Royon, N. Converset. Quality control of fluorescence imaging systems: a new tool for performance assessment and monitoring. Opt. Photonik, 12, 22-25(2017).

    [6] R. Lin, A. H. Clowsley, T. Lutz, D. Baddeley, C. Soeller. 3D super-resolution microscopy performance and quantitative analysis assessment using DNA-PAINT and DNA origami test samples. Methods, 174, 56-71(2020).

    [7] A. D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. Schermelleh, T. Wilson, M. Booth, P. S. Salter. Microscope calibration using laser written fluorescence. Opt. Express, 26, 21887-21899(2018).

    [8] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods, 5, 763-775(2008).

    [9] G. Grimaldi, J. J. Geuchies, W. Van Der Stam, I. Du Fossé, B. Brynjarsson, N. Kirkwood, S. Kinge, L. D. Siebbeles, A. J. Houtepen. Spectroscopic evidence for the contribution of holes to the bleach of Cd-chalcogenide quantum dots. Nano Lett., 19, 3002-3010(2019).

    [10] P. Reineck, A. Francis, A. Orth, D. W. M. Lau, R. D. V. Nixon-Luke, I. D. Rastogi, W. A. W. Razali, N. M. Cordina, L. M. Parker, V. K. A. Sreenivasan, L. J. Brown, B. C. Gibson. Brightness and photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv. Opt. Mater., 4, 1549-1557(2016).

    [11] S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, Y.-C. Yu. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc., 127, 17604-17605(2005).

    [12] S. Hemelaar, P. De Boer, M. Chipaux, W. Zuidema, T. Hamoh, F. P. Martinez, A. Nagl, J. Hoogenboom, B. Giepmans, R. Schirhagl. Nanodiamonds as multi-purpose labels for microscopy. Sci. Rep., 7, 1(2017).

    [13] A. Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B, 61, 12909-12922(2000).

    [14] M. H. Alkahtani, F. Alghannam, L. Jiang, A. Almethen, A. A. Rampersaud, R. Brick, C. L. Gomes, M. O. Scully, P. R. Hemmer. Fluorescent nanodiamonds: past, present, and future. Nanophotonics, 7, 1423-1453(2018).

    [15] E. Fraczek, V. G. Savitski, M. Dale, B. G. Breeze, P. Diggle, M. Markham, A. Bennett, H. Dhillon, M. E. Newton, A. J. Kemp. Laser spectroscopy of NV and NV0 colour centres in synthetic diamond. Opt. Mater. Express, 7, 2571-2585(2017).

    [16] G. Laporte, D. Psaltis. STED imaging of green fluorescent nanodiamonds containing nitrogen-vacancy-nitrogen centers. Biomed. Opt. Express, 7, 34-44(2016).

    [17] C. Laube, T. Oeckinghaus, J. Lehnert, J. Griebel, W. Knolle, A. Denisenko, A. Kahnt, J. Meijer, J. Wrachtrup, B. Abel. Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. Nanoscale, 11, 1770-1783(2019).

    [18] F. Trojánek, K. Ždek, B. Dzurňák, M. Kozák, P. Malý. Nonlinear optical properties of nanocrystalline diamond. Opt. Express, 18, 1349-1357(2010).

    [19] M. Kozák, F. Trojánek, B. Rezek, A. Kromka, P. Malý. Optical harmonic generation in nanocrystalline diamond. Phys. E, 44, 1300-1303(2012).

    [20] V. Pichot, O. Muller, A. Seve, A. Yvon, L. Merlat, D. Spitzer. Optical properties of functionalized nanodiamonds. Sci. Rep., 7, 14086(2017).

    [21] V. N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi. The properties and applications of nanodiamonds. Nat. Nanotechnol., 7, 11-23(2012).

    [22] A. H. Heffernan, A. D. Greentree, B. C. Gibson. Nanodiamond arrays on glass for quantification and fluorescence characterisation. Sci. Rep., 7, 9252(2017).

    [23] Y.-C. Chen, P. S. Salter, S. Knauer, L. Weng, A. C. Frangeskou, C. J. Stephen, S. N. Ishmael, P. R. Dolan, S. Johnson, B. L. Green, G. W. Morley, M. E. Newton, J. G. Rarity, M. J. Booth, J. M. Smith. Laser writing of coherent colour centres in diamond. Nat. Photonics, 11, 77-80(2017).

    [24] T. Ruf, M. Cardona, C. Pickles, R. Sussmann. Temperature dependence of the refractive index of diamond up to 925  K. Phys. Rev. B, 62, 16578-16581(2000).

    [25] M. Žurauskas, R. Barkalifa, A. Alex, M. Marjanovic, D. R. Spillman, P. Mukherjee, C. D. Neitzel, W. Lee, J. Medler, Z. Arp, M. Cleveland, S. Hood, S. A. Boppart. Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin. Sci. Rep., 10, 1(2020).

    [26] A. Alex, E. J. Chaney, M. Žurauskas, J. M. Criley, D. R. Spillman, P. B. Hutchison, J. Li, M. Marjanovic, S. Frey, Z. Arp, S. A. Boppart. In vivo characterization of minipig skin as a model for dermatological research using multiphoton microscopy. Exp. Dermatol., 29, 953-960(2020).

    [27] S. M. Sternisha, P. Mukherjee, A. Alex, E. J. Chaney, R. Barkalifa, B. Wan, J. H. Lee, J. Rico-Jimenez, M. Žurauskas, D. R. Spillman, S. A. Sripada, M. Marjanovic, Z. Arp, S. S. Galosy, D. S. Bhanushali, S. R. Hood, S. Bose, S. A. Boppart. Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy. Biotechnol. J., 16, e2000629(2021).

    [28] J. H. Lee, J. J. Rico-Jimenez, C. Zhang, A. Alex, E. J. Chaney, R. Barkalifa, D. R. Spillman, M. Marjanovic, Z. Arp, S. R. Hood, S. A. Boppart. Simultaneous label-free autofluorescence and multi-harmonic imaging reveals in vivo structural and metabolic changes in murine skin. Biomed. Opt. Express, 10, 5431-5444(2019).

    [29] J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, J. Wrachtrup. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano, 3, 1959-1965(2009).

    [30] D. G. Monticone, F. Quercioli, R. Mercatelli, S. Soria, S. Borini, T. Poli, M. Vannoni, E. Vittone, P. Olivero. Systematic study of defect-related quenching of NV luminescence in diamond with time-correlated single-photon counting spectroscopy. Phys. Rev. B, 88, 155201(2013).

    [31] W. Colomb, J. Czerski, J. Sau, S. K. Sarkar. Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. J. Microsc., 266, 298-306(2017).

    [32] N. Meitav, E. N. Ribak, S. Shoham. Point spread function estimation from projected speckle illumination. Light: Sci. Appl., 5, e16048(2016).

    [33] M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Göhler, I. Davis, M. J. Booth. Isosense: frequency enhanced sensorless adaptive optics through structured illumination. Optica, 6, 370-379(2019).

    [34] M. Booth, D. Andrade, D. Burke, B. Patton, M. Žurauskas. Aberrations and adaptive optics in super-resolution microscopy. Microscopy, 64, 251-261(2015).

    [35] M. D. Torelli, N. A. Nunn, O. A. Shenderova. A perspective on fluorescent nanodiamond bioimaging. Small, 15, 1902151(2019).

    [36] N. Nunn, N. Prabhakar, P. Reineck, V. Magidson, E. Kamiya, W. F. Heinz, M. D. Torelli, J. Rosenholm, A. Zaitsev, O. Shenderova. Brilliant blue, green, yellow, and red fluorescent diamond particles: synthesis, characterization, and multiplex imaging demonstrations. Nanoscale, 11, 11584-11595(2019).

    [37] K. K. Narayanasamy, J. C. Price, R. Mesquita-Riberio, M. L. Mather, I. Jayasinghe. Self-activated photoblinking of nitrogen vacancy centers in nanodiamonds (sandSTORM): a method for rapid single molecule localization microscopy with unlimited observation time(2020).

    [38] S. K. Singam, J. Motylewski, A. Monaco, E. Gjorgievska, E. Bourgeois, M. Nesládek, M. Giugliano, E. Goovaerts. Contrast induced by a static magnetic field for improved detection in nanodiamond fluorescence microscopy. Phys. Rev. Appl., 6, 064013(2016).

    [39] Z. R. Jones, N. J. Niemuth, M. E. Robinson, O. A. Shenderova, R. D. Klaper, R. J. Hamers. Selective imaging of diamond nanoparticles within complex matrices using magnetically induced fluorescence contrast. Environ. Sci. Nano, 7, 525-534(2020).

    [40] M. Capelli, P. Reineck, D. W. Lau, A. Orth, J. Jeske, M. Doherty, T. Ohshima, A. D. Greentree, B. C. Gibson. Magnetic field-induced enhancement of the nitrogen-vacancy fluorescence quantum yield. Nanoscale, 9, 9299-9304(2017).

    [41] L. J. Rogers, M. W. Doherty, M. S. Barson, S. Onoda, T. Ohshima, N. B. Manson. Singlet levels of the NV- centre in diamond. New J. Phys., 17, 013048(2015).

    [42] A. Kuwahata, T. Kitaizumi, K. Saichi, T. Sato, R. Igarashi, T. Ohshima, Y. Masuyama, T. Iwasaki, M. Hatano, F. Jelezko, M. Kusakabe, T. Yatsui, M. Sekino. Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Sci. Rep., 10, 2483(2020).

    [43] C.-D. Frese, S. Schiller. 3D tomographic magnetofluorescence imaging of nanodiamonds. Biomed. Opt. Express, 11, 533-553(2020).

    [44] I. Pope, L. Payne, G. Zoriniants, E. Thomas, O. Williams, P. Watson, W. Langbein, P. Borri. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nat. Nanotechnol., 9, 940-946(2014).

    [45] A. Abulikemu, Y. Kainuma, T. An, M. Hase. Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers. ACS Photon., 8, 988-993(2021).

    Mantas Žurauskas, Aneesh Alex, Jaena Park, Steve R. Hood, Stephen A. Boppart. Fluorescent nanodiamonds for characterization of nonlinear microscopy systems[J]. Photonics Research, 2021, 9(12): 2309
    Download Citation