• Photonics Research
  • Vol. 6, Issue 11, 1040 (2018)
Yue Jia1、2, Youxian Shan1、2, Leiming Wu1、2, Xiaoyu Dai1、2, Dianyuan Fan1、2, and Yuanjiang Xiang2、*
Author Affiliations
  • 1SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1364/PRJ.6.001040 Cite this Article Set citation alerts
    Yue Jia, Youxian Shan, Leiming Wu, Xiaoyu Dai, Dianyuan Fan, Yuanjiang Xiang. Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide[J]. Photonics Research, 2018, 6(11): 1040 Copy Citation Text show less
    References

    [1] A. H. C. Neto, K. Novoselov. New directions in science and technology: two-dimensional crystals. Rep. Prog. Phys., 74, 82501-82509(2011).

    [2] Q. H. Wang, K. Kalantarzadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 7, 699-712(2012).

    [3] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7, 2898-2926(2013).

    [4] R. H. Friend, A. D. Yoffe. Electronic Properties of Intercalation Complexes of the Transition Metal Dichalcogenides, 1-94(1984).

    [5] S. Chuang, R. Kapadia, H. Fang, T. C. Chang, W. C. Yen, Y. L. Chueh, A. Javey. Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes. Appl. Phys. Lett., 102, 242101(2013).

    [6] A. Allain, A. Kis. Electron and hole mobilities in single-layer WSe2. ACS Nano, 8, 7180-7185(2014).

    [7] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).

    [8] S. Yoshida, Y. Terada, M. Yokota, O. Takeuchi, Y. Mera, H. Shigekawa. Direct probing of transient photocurrent dynamics in p-WSe2 by time-resolved scanning tunneling microscopy. Appl. Phys. Express, 6, 016601(2013).

    [9] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, G. Eda. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano, 7, 791-797(2013).

    [10] F. Consadori, R. F. Frindt. Crystal size effects on the exciton absorption spectrum of WSe2. Phys. Rev. B, 2, 4893-4896(1970).

    [11] A. R. Beal, W. Y. Liang, H. P. Hughes. Kramers–Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2. J. Phys. C, 9, 2449-2457(1976).

    [12] R. Coehoorn, C. Haas, R. A. de Groot. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B, 35, 6203-6206(1987).

    [13] H. J. Lewerenz, A. Heller, F. J. Disalvo. Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes. J. Am. Chem. Soc., 102, 1877-1880(1980).

    [14] J. R. Mckone, A. P. Pieterick, H. B. Gray, N. S. Lewis. Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. J. Am. Chem. Soc., 135, 223-231(2012).

    [15] V. Podzorov. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett., 84, 3301-3303(2004).

    [16] P. D. Antunez, D. H. Webber, R. L. Brutchey. Solution-phase synthesis of highly conductive tungsten diselenide nanosheets. Chem. Mater., 25, 2385-2387(2013).

    [17] H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, H. Zhang. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 9, 1974-1981(2013).

    [18] H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett., 13, 3426-3433(2013).

    [19] N. T. Nguyen, P. A. Berseth, Q. Lin, C. Chiritescu, D. G. Cahill, A. Mavrokefalos, L. Shi, P. Zschack, M. D. Anderson, I. M. Anderson. Synthesis and properties of turbostratically disordered, ultrathin WSe2 films. Chem. Mater., 22, 2750-2756(2010).

    [20] C. Lee, X. Wei, J. W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388(2008).

    [21] L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, J. Liu, Y. Xiang, S. Xu, J. Li, D. Fan, H. Zhang. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv. Opt. Mater., 6, 1700985(2018).

    [22] S. D. Durbin, S. M. Arakelian, Y. R. Shen. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt. Lett., 6, 411-413(1981).

    [23] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, P. Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett., 37, 1856-1858(2012).

    [24] G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, J. Wang. Tunable nonlinear refractive index of two-dimensional MoS2, WS2 and MoSe2 nanosheet dispersions. Photon. Res., 3, A51-A55(2015).

    [25] G. Wang, S. Higgins, K. Wang, D. Bennett, N. Milosavljevic, J. J. Magan, S. Zhang, X. Zhang, J. Wang, W. J. Blau. Intensity-dependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region. Appl. Opt., 57, E147-E153(2018).

    [26] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari. Graphene photonics and optoelectronics. Nat. Photonics, 4, 611-622(2010).

    [27] Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, J. Zhao. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation. Proc. Natl. Acad. Sci., 112, 11800-11805(2015).

    [28] D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L. S. Ma, J. L. Hall. Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies. Opt. Lett., 25, 308-310(2000).

    [29] S. Matsuoka, N. Miyanaga, S. Amano, M. Nakatsuka. Frequency modulation controlled by cross-phase modulation in optical fiber. Opt. Lett., 22, 25-27(1997).

    [30] G. P. Agrawal. Modulation instability induced by cross-phase modulation. Phys. Rev. Lett., 59, 880-883(1987).

    [31] Y. F. Chen, C. Y. Wang, S. H. Wang, I. A. Yu. Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett., 96, 043603(2006).

    [32] P. Tonndorf, R. Schmidt, P. Bottger, X. Zhang, J. Borner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn. Photoluminescence emission and Raman response of MoS2, MoSe2, and WSe2 nanolayers. Opt. Express, 21, 4908-4916(2013).

    [33] G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, J. Wang. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation. Appl. Phys. Lett., 104, 141909(2014).

    [34] B. Shi, L. Miao, Q. Wang, J. Du, P. Tang, J. Liu, C. Zhao, S. Wen. Broadband ultrafast spatial self-phase modulation for topological insulator Bi2Te3 dispersions. Appl. Phys. Lett., 107, 151101(2015).

    [35] U. Keller. Recent developments in compact ultrafast lasers. Nature, 424, 831-838(2003).

    [36] J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu, L. J. Li. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano, 8, 923-930(2013).

    [37] Q. Cui, F. Ceballos, N. Kumar, H. Zhao. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano, 8, 2970-2976(2014).

    [38] Y. L. Wu, L. L. Zhu, Q. Wu, F. Sun, J. K. Wei, Y. C. Tian, W. L. Wang, X. D. Bai, X. Zuo, J. Zhao. Electronic origin of spatial self-phase modulation: evidenced by comparing graphite with C60 and graphene. Appl. Phys. Lett., 108, 241110(2016).

    [39] X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, S. Xiao, X. Yu, Y. Gao, J. He. Tri-phase all-optical switching and broadband nonlinear optical response in Bi2Se3 nanosheets. Opt. Express., 25, 18346-18354(2017).

    [40] J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, J. He. Broadband spatial self-phase modulation of black phosphorous. Opt. Lett., 41, 1704-1707(2016).

    [41] Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, J. Bao. Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. Nanoscale, 9, 3547-3554(2017).

    Yue Jia, Youxian Shan, Leiming Wu, Xiaoyu Dai, Dianyuan Fan, Yuanjiang Xiang. Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide[J]. Photonics Research, 2018, 6(11): 1040
    Download Citation