• Photonics Research
  • Vol. 10, Issue 11, 2607 (2022)
Jia-Zhi Yang1、†, Rui-Zhe Zhao2、†, Zhe Meng1, Jian Li1, Qing-Yuan Wu1, Ling-Ling Huang2、3、*, and An-Ning Zhang1、4、*
Author Affiliations
  • 1Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 2Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3e-mail:
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.470537 Cite this Article Set citation alerts
    Jia-Zhi Yang, Rui-Zhe Zhao, Zhe Meng, Jian Li, Qing-Yuan Wu, Ling-Ling Huang, An-Ning Zhang. Quantum metasurface holography[J]. Photonics Research, 2022, 10(11): 2607 Copy Citation Text show less
    References

    [1] N. F. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [2] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [3] Z. Xu, L. Huang, X. Li, C. Tang, Q. Wei, Y. Wang. Quantitatively correlated amplitude holography based on photon sieves. Adv. Opt. Mater., 8, 1901169(2019).

    [4] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [5] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [6] M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [7] S. Kruk, B. Hopkins, I. I. Kravchenko, A. Miroshnichenko, D. N. Neshev, Y. S. Kivshar. Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photon., 1, 030801(2016).

    [8] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, F. Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [9] W. T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, A. Zaidi, F. Capasso. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl., 6, e16259(2017).

    [10] X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, Y. Wang. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface. Appl. Phys. Lett., 112, 073104(2018).

    [11] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [12] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, N. Yu. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [13] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [14] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [15] R. Camacho-Morales, M. Rahmani, S. Kruk, L. Wang, L. Xu, D. A. Smirnova, A. S. Solntsev, A. Miroshnichenko, H. H. Tan, F. Karouta. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett., 16, 7191-7197(2016).

    [16] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, J. Valentine. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 15, 7388-7393(2015).

    [17] P. K. Jha, X. Ni, C. Wu, Y. Wang, X. Zhang. Metasurface-enabled remote quantum interference. Phys. Rev. Lett., 115, 025501(2015).

    [18] T. Roger, S. Vezzoli, E. Bolduc, J. Valente, J. J. F. Heitz, J. Jeffers, C. Soci, J. Leach, C. Couteau, N. I. Zheludev, D. Faccio. Coherent perfect absorption in deeply subwavelength films in the single-photon regime. Nat. Commun., 6, 7031(2015).

    [19] P. Georgi, M. Massaro, K.-H. Luo, B. Sain, N. Montaut, H. Herrmann, T. Weiss, G. Li, C. Silberhorn, T. Zentgraf. Metasurface interferometry toward quantum sensors. Light Sci. Appl., 8, 70(2019).

    [20] C. Altuzarra, A. Lyons, G. Yuan, C. Simpson, T. Roger, J. S. Ben-Benjamin, D. Faccio. Imaging of polarization-sensitive metasurfaces with quantum entanglement. Phys. Rev. A, 99, 020101(2019).

    [21] K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H.-P. Chung, M. Parry, I. I. Kravchenko, Y.-H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, A. A. Sukhorukov. Quantum metasurface for multiphoton interference and state reconstruction. Science, 361, 1104-1108(2018).

    [22] L. Li, Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C. H. Chu, H. Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, D. P. Tsai. Metalens-array–based high-dimensional and multiphoton quantum source. Science, 368, 1487-1490(2020).

    [23] J. Zhou, S. Liu, H. Qian, Y. Li, H. Luo, S. Wen, Z. Zhou, G. Guo, B. Shi, Z. Liu. Metasurface enabled quantum edge detection. Sci. Adv., 6, eabc4385(2020).

    [24] W. J. M. Kort-Kamp, A. K. Azad, D. A. R. Dalvit. Space-time quantum metasurfaces. Phys. Rev. Lett., 127, 043603(2021).

    [25] L. Huang, S. Zhang, T. Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169-1190(2018).

    [26] R. Zhao, L. Huang, Y. Wang. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 1, 20(2020).

    [27] H. Butt, Y. Montelongo, T. Butler, R. Rajesekharan, Q. Dai, S. G. Shiva-Reddy, T. D. Wilkinson, G. A. Amaratunga. Carbon nanotube based high resolution holograms. Adv. Mater., 24, OP331-OP336(2012).

    [28] N. D. Mermin. Is the moon there when nobody looks? Reality and the quantum theory. Phys. Today, 38, 38-47(1985).

    [29] M. K. Patra, S. Pironio, S. Massar. No-go theorems for ψ-epistemic models based on a continuity assumption. Phys. Rev. Lett., 111, 090402(2013).

    [30] M. S. Leifer. ψ-epistemic models are exponentially bad at explaining the distinguishability of quantum states. Phys. Rev. Lett., 112, 160404(2014).

    [31] C. Branciard. How ψ-epistemic models fail at explaining the indistinguishability of quantum states. Phys. Rev. Lett., 113, 020409(2014).

    [32] R. Colbeck, R. Renner. Is a system’s wave function in one-to-one correspondence with its elements of reality?. Phys. Rev. Lett., 108, 150402(2012).

    [33] J. Barrett, E. G. Cavalcanti, R. Lal, O. J. Maroney. No ψ-epistemic model can fully explain the indistinguishability of quantum states. Phys. Rev. Lett., 112, 250403(2014).

    [34] M. Ringbauer, B. Duffus, C. Branciard, E. G. Cavalcanti, A. G. White, A. Fedrizzi. Measurements on the reality of the wavefunction. Nat. Phys., 11, 249-254(2015).

    [35] R. Zhao, B. Sain, Q. Wei, C. Tang, X. Li, T. Weiss, L. Huang, Y. Wang, T. Zentgraf. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [36] R. H. Brown, R. Q. Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

    [37] R. J. Glauber. Photon correlations. Phys. Rev. Lett., 10, 84-86(1963).

    [38] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian. Image denoising with block-matching and 3D filtering. Proc. SPIE, 6064, 606414(2006).

    [39] Y. Mäkinen, L. Azzari, A. Foi. Collaborative filtering of correlated noise: exact transform-domain variance for improved shrinkage and patch matching. IEEE Trans. Image Process., 29, 8339-8354(2020).

    Jia-Zhi Yang, Rui-Zhe Zhao, Zhe Meng, Jian Li, Qing-Yuan Wu, Ling-Ling Huang, An-Ning Zhang. Quantum metasurface holography[J]. Photonics Research, 2022, 10(11): 2607
    Download Citation