• Advanced Photonics Nexus
  • Vol. 3, Issue 3, 036003 (2024)
Bowang Shu1, Yuqiu Zhang1、*, Hongxiang Chang1, Shiqing Tang1, Jinyong Leng1、2、3, and Pu Zhou1、*
Author Affiliations
  • 1National University of Defense Technology, College of Advanced Interdisciplinary Studies, Changsha, China
  • 2National University of Defense Technology, Nanhu Laser Laboratory, Changsha, China
  • 3National University of Defense Technology, Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, China
  • show less
    DOI: 10.1117/1.APN.3.3.036003 Cite this Article Set citation alerts
    Bowang Shu, Yuqiu Zhang, Hongxiang Chang, Shiqing Tang, Jinyong Leng, Pu Zhou. Integrated coherent beam combining system for orbital-angular-momentum shift-keying-based free-space optical links[J]. Advanced Photonics Nexus, 2024, 3(3): 036003 Copy Citation Text show less
    References

    [1] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [3] A. E. Willner. OAM light for communications. Opt. Photonics News, 32, 34-41(2021).

    [4] A. Yi et al. Transmission of multi-dimensional signals for next generation optical communication systems. Opt. Commun., 408, 42-52(2018).

    [5] N. Zhao et al. Capacity limits of spatially multiplexed free-space communication. Nat. Photonics, 9, 822-826(2015).

    [6] G. Gibson et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [7] S. Fu et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt. Lett., 27, 33111-33119(2019).

    [8] S. Fu et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Opt. Lett., 44, 4753-4756(2019).

    [9] Z. Shang et al. Multiplexed vortex state array toward high-dimensional data multicasting. Opt. Express, 30, 34053-34063(2022).

    [10] Y. Awaji, N. Wada, Y. Toda. Demonstration of spatial mode division multiplexing using Laguerre-Gaussian mode beam in telecom-wavelength, 551-552(2010).

    [11] Y. Yan et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum. Opt. Lett., 38, 3930-3933(2013).

    [12] S. Fu et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Opt. Lett., 41, 5454-5457(2016).

    [13] S. Li, J. Wang. Simultaneous demultiplexing and steering of multiple orbital angular momentum modes. Sci. Rep., 5, 15406(2015).

    [14] Z. Liu et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [15] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [16] H. Hao et al. 100 Tbit/s free-space data link using orbital angular momentum mode division multiplexing combined with wavelength division multiplexing, 1-3(2013).

    [17] J. Wang et al. In N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes, 1-3(2014).

    [18] I. B. Djordjevic. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. Opt. Express, 19, 14277-14289(2011).

    [19] R. Zhang et al. Simultaneous turbulence mitigation and channel demultiplexing for two 100 Gbit/s orbital-angular-momentum multiplexed beams by adaptive wavefront shaping and diffusing. Opt. Lett., 45, 702-705(2020).

    [20] M. J. Padgett et al. Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J. Phys., 17, 023011(2015).

    [21] D. Lin et al. Reconfigurable structured light generation in a multicore fiber amplifier. Nat. Commun., 11, 3986(2020).

    [22] M. Veinhard et al. Orbital angular momentum beams generation from 61 channels coherent beam combining femtosecond digital laser. Opt. Lett., 46, 25-28(2021).

    [23] J. Long et al. Generating the 1.5 kW mode-tunable fractional vortex beam by a coherent beam combining system. Opt. Lett., 48, 5021-5024(2023).

    [24] T. Hou et al. Higher-order Airy patterns and their application in tailoring orbital angular momentum beams with fiber laser arrays. J. Lightwave Technol., 39, 4758-4768(2021).

    [25] J. A. Anguita, M. A. Neifeld, B. V. Vasic. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt., 47, 2414-2429(2008).

    [26] B. Rouzé et al. Experimental study of the impact of carrying a telecom signal on LOCSET-based coherent beam combining. Opt. Express, 31, 26552-26564(2023).

    [27] V. Billault et al. Optical coherent combining of high-power optical amplifiers for free-space optical communications. Opt. Lett., 48, 3649-3652(2023).

    [28] P. Ju et al. Atmospheric turbulence effects on the performance of orbital angular momentum multiplexed free-space optical links using coherent beam combining. Photonics, 10, 634(2023).

    [29] Q. Sun et al. Generating a Bessel-Gaussian beam for the application in optical engineering. Sci. Rep., 5, 18665(2015).

    [30] H. Xia et al. The generation and verification of Bessel-Gaussian beam based on coherent beam combining. Results Phys., 16, 102872(2020).

    [31] V. P. Aksenov, V. V. Dudorov, V. V. Kolosov. Characterization of vortex beams synthesized on the basis of a fiber laser array. Proc. SPIE, 9680, 96802D(2015).

    [32] S Fu et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Opt. Express, 24, 6240-6248(2016).

    Bowang Shu, Yuqiu Zhang, Hongxiang Chang, Shiqing Tang, Jinyong Leng, Pu Zhou. Integrated coherent beam combining system for orbital-angular-momentum shift-keying-based free-space optical links[J]. Advanced Photonics Nexus, 2024, 3(3): 036003
    Download Citation