• Advanced Photonics
  • Vol. 6, Issue 3, 036001 (2024)
Hua Lu*, Shouhao Shi, Dikun Li, Shuwen Bo, Jianxu Zhao, Dong Mao, and Jianlin Zhao*
Author Affiliations
  • Northwestern Polytechnical University, School of Physical Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
  • show less
    DOI: 10.1117/1.AP.6.3.036001 Cite this Article Set citation alerts
    Hua Lu, Shouhao Shi, Dikun Li, Shuwen Bo, Jianxu Zhao, Dong Mao, Jianlin Zhao. λ/20-Thick cavity for mimicking electromagnetically induced transparency at telecommunication wavelengths[J]. Advanced Photonics, 2024, 6(3): 036001 Copy Citation Text show less
    References

    [1] L. Yang et al. Topological-cavity surface-emitting laser. Nat. Photonics, 16, 279-283(2022).

    [2] H. Wang et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770-775(2019).

    [3] J. Ni et al. Multidimensional phase singularities in nanophotonics. Science, 374, eabj0039(2021).

    [4] X. Zhang et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics, 13, 21-24(2019).

    [5] T. Shi et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [6] H. Altug et al. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol., 17, 5-16(2022).

    [7] C. Chi et al. Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect. Sci. Adv., 7, eabf8011(2021).

    [8] I. Staude, J. Schilling. Metamaterial-inspired silicon nanophotonics. Nat. Photonics, 11, 274-284(2017).

    [9] T. Liu et al. High-efficiency optical frequency mixing in an all-dielectric metasurface enabled by multiple bound states in the continuum. Phys. Rev. B, 107, 075441(2023).

    [10] A. Shaltout et al. Ultrathin and multicolour optical cavities with embedded metasurfaces. Nat. Commun., 9, 2673(2018).

    [11] J. Wu et al. Graphene oxide for integrated photonics and flat optics. Adv. Mater., 33, 2006415(2021).

    [12] M. L. Brongersma et al. Light management for photovoltaics using high-index nanostructures. Nat. Mater., 13, 451-460(2014).

    [13] M. A. Kats et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater., 12, 20-24(2013).

    [14] X. Gan et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics, 7, 883-887(2013).

    [15] S. Lischke et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photonics, 15, 925-931(2021).

    [16] W. Hu et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light Sci. Appl., 8, 106(2019).

    [17] M. König et al. Quantum spin Hall insulator state in HgTe quantum wells. Science, 318, 766-770(2007).

    [18] H. Krishnamoorthy et al. Topological insulator metamaterials. Chem. Rev., 123, 4416-4442(2023).

    [19] H. Zhang et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 5, 438-442(2009). https://doi.org/10.1038/nphys1270

    [20] D. Kong et al. Ambipolar field effect in the ternary topological insulator (BixSb1x)2Te3 by composition tuning. Nat. Nanotechnol., 6, 705-709(2011). https://doi.org/10.1038/nnano.2011.172

    [21] P. Yu, H. Lu, H. Xu, Z. Wang et al. Topological insulator plasmonics and enhanced light-matter interactions. Plasmon-Enhanced Light-Matter Interactions, 89-116(2022).

    [22] H. Lu et al. Magnetic plasmon resonances in nanostructured topological insulators for strongly enhanced light-MoS2 interactions. Light Sci. Appl., 9, 191(2020). https://doi.org/10.1038/s41377-020-00429-x

    [23] J. Yin et al. Plasmonics of topological insulators at optical frequencies. NPG Asia Mater., 9, e425(2017).

    [24] X. Sun et al. Topological insulator metamaterial with giant circular photogalvanic effect. Sci. Adv., 7, eabe5748(2021).

    [25] K. J. Boller et al. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).

    [26] T. F. Krauss. Why do we need slow light?. Nat. Photonics, 2, 448-450(2008).

    [27] L. V. Hau et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397, 594-598(1999).

    [28] N. Caselli et al. Generalized Fano lineshapes reveal exceptional points in photonic molecules. Nat. Commun., 9, 396(2018).

    [29] B. Peng et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [30] C. Wang et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [31] N. Liu et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [32] N. Liu et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett., 10, 1103-1107(2010).

    [33] N. Liu et al. Three-dimensional plasmon rulers. Science, 332, 1407-1410(2011).

    [34] T. Kim et al. Electrically tunable slow light using graphene metamaterials. ACS Photonics, 5, 1800-1807(2018).

    [35] M. Sabarinathan et al. n-type to p-type transition of electrical conduction in silver (Ag)-modified Bi2Te3 nanosheets. J. Electron. Mater., 51, 7275-7282(2022). https://doi.org/10.1007/s11664-022-09974-0

    [36] A. Bailini et al. Pulsed laser deposition of Bi2Te3 thermoelectric films. Appl. Surf. Sci., 254, 1249-1254(2007). https://doi.org/10.1016/j.apsusc.2007.09.039

    [37] M. Rusek et al. Bismuth amides as promising ALD precursors for Bi2Te3 films. J. Crys. Growth, 470, 128-134(2017). https://doi.org/10.1016/j.jcrysgro.2017.04.019

    [38] K. Sreekanth et al. Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity. Nat. Commun., 9, 369(2018).

    [39] S. N. Chowdhury et al. Wide-range angle-sensitive plasmonic color printing on lossy-resonator substrates. Adv. Opt. Mater., 12, 2301678(2024).

    [40] L. Goncalves et al. Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films, 518, 2816-2821(2010). https://doi.org/10.1016/j.tsf.2009.08.038

    [41] V. Y. Kolosov, A. A. Yushkov. Microstructures in thin Bi2Te3 films according to transmission electron microscopy. AIP Conf. Proc., 2313, 030019(2020). https://doi.org/10.1063/5.0033544

    [42] J. Y. Ou et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2. Nat. Commun., 5, 5139(2014). https://doi.org/10.1038/ncomms6139

    [43] H. Lu et al. Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring. Nanoscale, 11, 4759-4766(2019). https://doi.org/10.1039/C8NR09227C

    [44] G. Jellison, F. Modine. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett., 69, 371-373(1996).

    [45] B. Xia et al. Indications of surface-dominated transport in single crystalline nanoflake devices of topological insulator Bi1.5Sb0.5Te1.8Se1.2. Phys. Rev. B, 87, 085442(2013). https://doi.org/10.1103/PhysRevB.87.085442

    [46] Y. Lin et al. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates. Nat. Commun., 12, 180(2021). https://doi.org/10.1038/s41467-020-20445-0

    [47] N. Krishnamoorthy et al. Infrared dielectric metamaterials from high refractive index chalcogenides. Nat. Commun., 11, 1692(2020).

    [48] H. Lu et al. Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures. Opt. Express, 25, 21630-21636(2017).

    [49] B. I. Afinogenov et al. Ultrafast all-optical light control with Tamm plasmons in photonic nanostructures. ACS Photonics, 6, 844-850(2019).

    [50] R. Badugu, J. R. Lakowicz. Tamm state-coupled emission: effect of probe location and emission wavelength. J. Phys. Chem. C, 118, 21558-21571(2014).

    [51] R. Badugu et al. Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure. Anal. Biochem., 445, 1-13(2014).

    [52] S. Xiao et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 126, 271(2018).

    [53] L. Mao et al. Reversible switching of electromagnetically induced transparency in phase change metasurfaces. Adv. Photonics, 2, 056004(2020).

    [54] Y. He et al. Plasmon induced transparency in a dielectric waveguide. Appl. Phys. Lett., 99, 043113(2011).

    [55] J. Tian et al. Near-infrared super-absorbing all-dielectric metasurface based on single-layer germanium nanostructures. Laser Photonics Rev., 12, 1800076(2018).

    [56] A. Taflove, S. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method(2000).

    [57] T. J. Bright et al. Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films. J. Appl. Phys., 114, 083515(2013). https://doi.org/10.1063/1.4819325

    [58] J. Kischkat et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt., 51, 6789-6798(2012).

    [59] E. Palik. Handbook of Optical Constants of Solids(1998).

    [60] M. J. Weber. Handbook of Optical materials(2003).

    Hua Lu, Shouhao Shi, Dikun Li, Shuwen Bo, Jianxu Zhao, Dong Mao, Jianlin Zhao. λ/20-Thick cavity for mimicking electromagnetically induced transparency at telecommunication wavelengths[J]. Advanced Photonics, 2024, 6(3): 036001
    Download Citation