
- Photonics Research
- Vol. 10, Issue 3, 697 (2022)
Abstract
1. INTRODUCTION
High-speed electro-optic (EO) modulators are key components in high-capacity, reconfigurable, and intelligent optical systems [1–6]. Recently, thin-film lithium-niobate-on-insulator (LNOI) systems with high EO coefficients have regained intensive interest for high-speed modulation because they offer high refractive-index contrast and possible compatibility with the complementary-metal-oxide-semiconductor (CMOS) processes [7,8]. High-performance EO modulators on LNOI have been demonstrated with the advantages of low losses, high bandwidths, and high linearity [9–12]. Currently, the demonstrated modulators on LNOI are mainly realized with a Mach–Zehnder interferometer (MZI) or a ring resonator. When using MZIs, which utilize two-beam interference [13,14], the footprint is usually as large as several centimeters. In order to achieve compact optical modulators, ring resonators are preferred [15–17]. However, for an
In this paper, we propose and demonstrate an ultracompact and high-speed EO modulator using a new
2. STRUCTURE AND DESIGN
Figure 1(a) shows the schematic configuration of the proposed EO modulator using a new
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
Figure 1.(a) Schematic configuration of the proposed ultracompact and high-speed EO modulator using a new
In this design, the waveguide structure is patterned on an
For the AMWG, the structure is designed according to the phase-matching condition between the
Figure 2(a) shows the simulated transmissions when the
Figure 2.(a) Calculated transmissions from the
3. FABRICATION AND MEASUREMENT
The devices were then fabricated with an
Figure 3.(a) The optical microscope image of the fabricated FP cavity modulator based on AMWGs; the SEM images of (b) the dual-core taper of mode (de)multiplexer, (c) the modulation region, and (d) the AMWG.
Grating couplers for TE polarization were used to achieve efficient chip-fiber coupling for the convenience of measurement, and the grating coupler has a high coupling efficiency of
Figure 4.Measured transmissions (a)
Figures 5(a) and 5(b) show the measured small-signal EO response (
Figure 5.Measured small-signal EO response (
Finally, high-speed digital data transmission of the fabricated EO modulator was characterized experimentally. Here an arbitrary wave generator (AWG) connected to the clock source was used to generate the pseudo-random bit sequence (PRBS), and a 55 GHz RF amplifier was used to amplify the driving signal. The modulated light was then collected by a wide-bandwidth oscilloscope (WBO). Figures 6(a) and 6(b) show the measured eye diagrams for the OOK signal at the data rate of 40 Gbps and the PAM4 signal at the data rate of 80 Gbps for the transmissions
Figure 6.Measured eye diagrams for the OOK signal at the data rate of 40 Gbps and the PAM4 signal at the data rate of 80 Gbps for the transmissions (a)
4. CONCLUSION
To conclude, we have proposed and demonstrated a high-speed LNOI electro-optic modulator based on a new
References
[1] C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, J. Leuthold. Low-loss plasmon-assisted electro-optic modulator. Nature, 556, 483-486(2018).
[2] C. T. Phare, Y.-H. D. Lee, J. Cardenas, M. Lipson. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 9, 511-514(2015).
[3] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, M. Takenaka. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).
[4] M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, D. J. McGee. Broadband modulation of light by using an electro-optic polymer. Science, 298, 1401-1403(2002).
[5] L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, J. Leuthold. 100 GHz silicon–organic hybrid modulator. Light Sci. Appl., 3, e173(2014).
[6] A. Honardoost, R. Safian, M. Teng, L. Zhuang. Ultralow-power polymer electro–optic integrated modulators. J. Semicond., 40, 070401(2019).
[7] A. Boes, B. Corcoran, L. Chang, J. Bowers, A. Mitchell. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).
[8] S. Yuan, C. Hu, A. Pan, Y. Ding, X. Wang, Z. Qu, J. Wei, Y. Liu, C. Zeng, J. Xia. Photonic devices based on thin-film lithium niobate on insulator. J. Semicond., 42, 041304(2021).
[9] B. Pan, J. Hu, Y. Huang, L. Song, J. Wang, P. Chen, Z. Yu, L. Liu, D. Dai. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Opt. Express, 29, 17710-17717(2021).
[10] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[11] P. Kharel, C. Reimer, K. Luke, L. He, M. Zhang. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).
[12] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbits-1 and beyond. Nat. Photonics, 13, 359-364(2019).
[13] S. Wang, D. Dai. Polarization-insensitive 2 × 2 thermo-optic Mach–Zehnder switch on silicon. Opt. Lett., 43, 2531-2534(2018).
[14] L. Song, H. Li, D. Dai. Mach–Zehnder silicon-photonic switch with low random phase errors. Opt. Lett., 46, 78-81(2021).
[15] C. Zhang, M. Zhang, Y. Xie, Y. Shi, R. Kumar, R. R. Panepucci, D. Dai. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photon. Res., 8, 1171-1176(2020).
[16] C. Wang, M. Zhang, B. Stern, M. Lipson, M. Lončar. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).
[17] D. Liu, J. Tang, Y. Meng, W. Li, N. Zhu, M. Li. Ultra-low
[18] B. Pan, Y. Tan, P. Chen, L. Liu, Y. Shi, D. Dai. Compact racetrack resonator on LiNbO3. J. Lightwave Technol., 39, 1770-1776(2021).
[19] J. Wang, P. Chen, D. Dai, L. Liu. Polarization coupling of
[20] A. Pan, C. Hu, C. Zeng, J. Xia. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).
[21] M. Xu, M. He, X. Liu, Y. Pan, S. Yu, X. Cai. Integrated lithium niobate modulator and frequency comb generator based on Fabry-Perot resonators. Conference on Lasers and Electro-Optics, JTh2B.27(2020).
[22] M. V. Kotlyar, S. Iadanza, L. O’Faolain. Lithium niobate Fabry-Perot microcavity based on strip loaded waveguides. Photon. Nanostruct. Fundam. Appl., 43, 100886(2021).
[23] D. Liu, D. Dai. Silicon-based polarization-insensitive optical filter with dual-gratings. Opt. Express, 27, 20704-20710(2019).
[24] D. Liu, H. Wu, D. Dai. Silicon multimode waveguide grating filter at 2 μm. J. Lightwave Technol., 37, 2217-2222(2019).
[25] D. Dai, C. Li, S. Wang, H. Wu, Y. Shi, Z. Wu, S. Gao, T. Dai, H. Yu, H.-K. Tsang. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).
[26] H. Qiu, J. Jiang, T. Hu, P. Yu, J. Yang, X. Jiang, H. Yu. Silicon add-drop filter based on multimode Bragg sidewall gratings and adiabatic couplers. J. Lightwave Technol., 35, 1705-1709(2017).
[27] G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, A. V. Krishnamoorthy. 25 Gb/s 1 V-driving CMOS ring modulator with integrated thermal tuning. Opt. Express, 19, 20435-20443(2011).
[28] M. Li, J. Ling, Y. He, U. A. Javid, S. Xue, Q. Lin. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).
[29] D. A. B. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346-396(2017).
[30] B.-B. Li, Y.-F. Xiao, C.-L. Zou, X.-F. Jiang, Y.-C. Liu, F.-W. Sun, Y. Li, Q. Gong. Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Appl. Phys. Lett., 100, 021108(2012).
[31] W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, J. K. S. Poon. Coupling modulation of microrings at rates beyond the linewidth limit. Opt. Express, 21, 9722-9733(2013).

Set citation alerts for the article
Please enter your email address