• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2114008 (2021)
Liqiang Zhou1、2、3、**, Chen Wei3、***, Hua Huang1, and Han Zhang2、*
Author Affiliations
  • 1College of Electrical Engineering, Sichuan University, Chengdu , Sichuan 610065, China
  • 2College of Biomedical Engineering, Sichuan University, Chengdu , Sichuan 610065, China
  • 3School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu , Sichuan 611731, China
  • show less
    DOI: 10.3788/LOP202158.2114008 Cite this Article Set citation alerts
    Liqiang Zhou, Chen Wei, Hua Huang, Han Zhang. Passively Q-Switched Ho3+/Pr3+ Co-Doped Fiber Laser Based on Au Nanocages Saturable Absorber[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2114008 Copy Citation Text show less
    References

    [1] Zlatanovic S, Park J S, Moro S et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[J]. Nature Photonics, 4, 561-564(2010).

    [2] Skorczakowski M, Swiderski J, Pichola W et al. Mid-infrared Q-switched Er: YAG laser for medical applications[J]. Laser Physics Letters, 7, 498-504(2010).

    [3] Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues[J]. Chemical Reviews, 103, 577-644(2003).

    [4] Werle P, Slemr F, Maurer K et al. Near- and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 37, 101-114(2002).

    [5] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [6] Zhang J, Zhang D, Liu H W et al. Actively Q-switched fiber laser with narrow linewidth, narrow pulse width, and high repetition rate[J]. Chinese Journal of Lasers, 47, 0101002(2020).

    [7] Zhang K L, Chen H W, Lu B L et al. Passively Q-switched erbium-doped fiber laser based on HfSe2 saturable absorber[J]. Acta Optica Sinica, 40, 1314001(2020).

    [8] Sun X, Jia D F, Li Z H et al. Generation of square pulses in passively mode-locked ytterbium-doped fiber laser with long cavity[J]. Chinese Journal of Lasers, 47, 0101003(2020).

    [9] Li J, Hudson D D, Liu Y et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747-3749(2012).

    [10] Li J F, Luo H Y, He Y L et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser[J]. Proceedings of SPIE, 9135, 913504(2014).

    [11] Shen Y L, Wang Y S, Luan K P et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 6, 26659(2016).

    [12] Qin Z P, Xie G Q, Zhang H et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 23, 24713-24718(2015).

    [13] Wei C, Zhu X S, Wang F et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 38, 3233-3236(2013).

    [14] Lü Y, Wei C, Zhang H et al. Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber[J]. Photonics Research, 7, 14-18(2019).

    [15] Wei C, Lü Y J, Shi H X et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-6(2019).

    [16] Wei C, Luo H Y, Zhang H et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 µm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 13, 105108(2016).

    [17] Li J F, Luo H Y, Wang L L et al. 3 μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 40, 3659-3662(2015).

    [18] Tang P H, Wu M, Wang Q K et al. 2.8 µm pulsed Er3+‍∶‍ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 28, 1573-1576(2016).

    [19] Elim H I, Yang J, Lee J Y et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods[J]. Applied Physics Letters, 88, 083107(2006).

    [20] de Boni L, Wood E L, Toro C et al. Optical saturable absorption in gold nanoparticles[J]. Plasmonics, 3, 171-176(2008).

    [21] Baida H, Mongin D, Christofilos D et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance[J]. Physical Review Letters, 107, 057402(2011).

    [22] Olesiak-Banska J, Gordel M, Kolkowski R et al. Third-order nonlinear optical properties of colloidal gold nanorods[J]. The Journal of Physical Chemistry C, 116, 13731-13737(2012).

    [23] Yu Y, Fan S S, Dai H W et al. Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids[J]. Applied Physics Letters, 105, 061903(2014).

    [24] Huang H T, Li M, Liu P et al. Gold nanorods as the saturable absorber for a diode-pumped nanosecond Q-switched 2 μm solid-state laser[J]. Optics Letters, 41, 2700-2703(2016).

    [25] Luo H Y, Kang Z, Gao Y et al. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3 μm[J]. Optics Express, 27, 4886-4896(2019).

    [26] Duan W C, Nie H K, Sun X L et al. Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber[J]. Optics Letters, 43, 1179-1182(2018).

    [27] Zhang W, Feng G Y, Dai S Y et al. Q-switched mid-infrared Er3+: ZBLAN fiber laser based on gold nanocrystals[J]. Laser Physics, 28, 095104(2018).

    [28] Yang L L, Kang Z, Huang B et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 43, 5459-5462(2018).

    [29] Yang J P, Shen D K, Zhou L et al. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release[J]. Chemistry of Materials, 25, 3030-3037(2013).

    [30] Tu M H, Sun T, Grattan K T V. LSPR optical fibre sensors based on hollow gold nanostructures[J]. Sensors and Actuators B: Chemical, 191, 37-44(2014).

    [31] Skrabalak S E, Chen J, Au L et al. Gold nanocages for biomedical applications[J]. Advanced Materials, 19, 3177-3184(2007).

    [32] Chen J, Wiley B, Li Z Y et al. Gold nanocages: engineering their structure for biomedical applications[J]. Advanced Materials, 17, 2255-2261(2005).

    [33] Demeritte T, Fan Z, Sinha S S et al. Gold nanocage assemblies for selective second harmonic generation imaging of cancer cell[J]. Chemistry - A European Journal, 20, 1017-1022(2014).

    [34] Park K, Biswas S, Kanel S et al. Engineering the optical properties of gold nanorods: independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section[J]. The Journal of Physical Chemistry C, 118, 5918-5926(2014).

    [35] Fontana J, Nita R, Charipar N et al. Widely tunable infrared plasmonic nanoantennas using directed assembly[J]. Advanced Optical Materials, 5, 1700335(2017).

    Liqiang Zhou, Chen Wei, Hua Huang, Han Zhang. Passively Q-Switched Ho3+/Pr3+ Co-Doped Fiber Laser Based on Au Nanocages Saturable Absorber[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2114008
    Download Citation