• Acta Optica Sinica
  • Vol. 42, Issue 1, 0130001 (2022)
Yu Cao, Jun Pan, Lijun Jiang*, Yehan Sun, and Yutao Bian
Author Affiliations
  • College of Geoexploration Science and Technology, Jilin University, Changchun, Jilin 130026, China
  • show less
    DOI: 10.3788/AOS202242.0130001 Cite this Article Set citation alerts
    Yu Cao, Jun Pan, Lijun Jiang, Yehan Sun, Yutao Bian. Directional Effect of Shortwave Infrared Spectroscopy Radiation of High-Temperature Target[J]. Acta Optica Sinica, 2022, 42(1): 0130001 Copy Citation Text show less
    References

    [1] Yu Y F, Pan J, Xing L X et al. Identification of high temperature targets in remote sensing imagery based on Mahalanobis distance[J]. Remote Sensing Information, 28, 90-94(2013).

    [2] Zhu Y J, Xing L X, Pan J et al. Method of identifying high-temperature target using shortwave infrared remote sensing data[J]. Remote Sensing Information, 26, 33-36, 41(2011).

    [3] Yu Y F, Pan J, Xing L X et al. Identification of high temperature targets in remote sensing imagery based on factor analysis[J]. Journal of Applied Remote Sensing, 083622(2014).

    [4] Yuan Y, Pan J, Xing L X et al. Identification of high temperature targets based on Fisher two types discrimination[J]. Science Technology and Engineering, 15, 109-113(2015).

    [5] Ji Y, Pan J, Jiang L J et al. Methods of identifying high temperature target from Landsat8 data using variance analysis[J]. Global Geology, 36, 1297-1302(2017).

    [6] Wang P J, Pan J, Jiang L J et al. Method of remote sensing multispectral recognition index construction for forest fire[J]. Science Technology and Engineering, 18, 312-319(2018).

    [7] Yu Y F, Xing L X, Pan J et al. Study of high temperature targets identification and temperature retrieval experimental model in SWIR remote sensing based Landsat8[J]. International Journal of Applied Earth Observation and Geoinformation, 46, 56-62(2016).

    [8] Chen L F, Fan W J, Liu Q H. The study on thermal infrared radiant directionality of non isothermal land surface[J]. Progress in Geography, 20, 261-266(2001).

    [9] Zhang X F, Pan J, Jiang L J et al. Directionality of radiation ratio of high temperature target[J]. Global Geology, 38, 522-531(2019).

    [10] Kimes D S, Idso S B. Jr, Pinter P J, et al. View angle effects in the radiometric measurement of plant canopy temperatures[J]. Remote Sensing of Environment, 10, 273-284(1980).

    [11] Balick L K, Remote Sensing. GE-, 24, 693-698(1986).

    [12] Balick L K, Hutchison B A, Smith J A, Remote Sensing et al. GE-, 25, 410-412(1987).

    [13] Chehbouni A, Nouvellon Y, Kerr Y H et al. Directional effect on radiative surface temperature measurements over a semiarid grassland site[J]. Remote Sensing of Environment, 76, 360-372(2001).

    [14] Harries J E, Russell J E, Hanafin J A et al. The geostationary earth radiation budget project[J]. Bulletin of the American Meteorological Society, 86, 945-960(2005).

    [15] Lian J, Sun H, Lin Q N et al. Field observations of background thermal radiation directionality in natural forests[J]. Journal of Remote Sensing, 21, 365-374(2017).

    [16] Xu X R, Zhuang J L, Chen L F. The multi-angle thermal infrared remote sensing and retrieval of component temperatures of mixed pixel[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 36, 555-560(2000).

    [17] Zhang R H, Sun X M, Li Z L et al. The main factors of thermal radiation directivity of ground objects: a new way to improve the accuracy of radiation temperature directivity observation and data analysis[J]. Science in China, 30, 39-44(2000).

    [18] Xu X R, Chen L F. The choice of scanning direction of multi-angle thermal infrared remote sensing[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 38, 98-103(2002).

    [19] Labed J, Stoll M P. Angular variation of land surface spectral emissivity in the thermal infrared: laboratory investigations on bare soils[J]. International Journal of Remote Sensing, 12, 2299-2310(1991).

    [20] Rees W G, James S P. Angular variation of the infrared emissivity of ice and water surfaces[J]. International Journal of Remote Sensing, 13, 2873-2886(1992).

    [21] Cuenca J, Sobrino J A. Experimental measurements for studying angular and spectral variation of thermal infrared emissivity[J]. Applied Optics, 43, 4598-4602(2004).

    [22] Su H B, Wang J D, Li X W et al. Indoor simulation and validation of thermal radiation directionality model for three dimensional surface with heterogeneous temperature[J]. Acta Armamentarii, s1, 71-80(2000).

    [23] Zhao W M, Li L F, Yuan Z Y et al. Directional spectral emissivity of Ti-6Al-4V alloy[J]. Acta Optica Sinica, 40, 0830002(2020).

    [24] Li X W, Strahler A H, Friedl M A. A conceptual model for effective directional emissivity from nonisothermal surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 37, 2508-2517(1999).

    [25] Wang J D, Li X W, Sun X M et al. Inversion of component temperature of non isothermal pixel using thermal radiation directivity model[J]. Science in China, 30, 54-60(2000).

    [26] Yan G J, Li X W, Wang J D et al. Modeling directional effects of thermal emission in wide band measurements[J]. Journal of Remote Sensing, 4, 189-193(2000).

    [27] Yan G J, Jiang L M, Wang J D et al. Model and verification of bi directional gap rate of heat radiation in row sown crops[J]. Science in China, 32, 857-863(2002).

    [28] Wang J D, Li X W, Su H B et al. An analytical thermal emission model on the effect of multiple scattering for 3-D structural pixel and the model validation[J]. Journal of Remote Sensing, 7, 1-7(2003).

    [29] Liu Q, Chen L F, Liu Q H et al. A radiation transfer model to predict canopy radiation in thermal infrared band[J]. Journal of Remote Sensing, 7, 161-167(2003).

    [30] Duffour C, Lagouarde J P, Roujean J L. A two parameter model to simulate thermal infrared directional effects for remote sensing applications[J]. Remote Sensing of Environment, 186, 250-261(2016).

    [31] Bian Z J, Cao B, Li H et al. An analytical four-component directional brightness temperature model for crop and forest canopies[J]. Remote Sensing of Environment, 209, 731-746(2018).

    [32] Tu L L, Qin Z H, Yang L C et al. Identifying the Lambertian property of ground surfaces in the thermal infrared region via field experiments[J]. Remote Sensing, 9, 481(2017).

    [33] Verhoef W, Jia L, Xiao Q et al. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 45, 1808-1822(2007).

    [34] Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model[J]. Remote Sensing of Environment, 16, 125-141(1984).

    [35] Ren H Z, Liu R Y, Yan G J et al. Angular normalization of land surface temperature and emissivity using multiangular middle and thermal infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 52, 4913-4931(2014).

    [36] Yang G J, Liu Q H, Liu Q et al. Directional simulation of thermal infrared radiation and 3D radiative transfer model of canopy[J]. Journal of Infrared and Millimeter Waves, 29, 38-44(2010).

    [37] Lü S H[M]. Basics of remote sensing physics(1981).

    Yu Cao, Jun Pan, Lijun Jiang, Yehan Sun, Yutao Bian. Directional Effect of Shortwave Infrared Spectroscopy Radiation of High-Temperature Target[J]. Acta Optica Sinica, 2022, 42(1): 0130001
    Download Citation