• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 6, 699 (2021)
Tao WU1、2、*, Renzhi HU1, Pinhua XIE1、2、3、4, Jiawei WANG1、2, and Wenqing LIU1、2、3、4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.06.001 Cite this Article
    WU Tao, HU Renzhi, XIE Pinhua, WANG Jiawei, LIU Wenqing. Research progress of atmospheric HCHO spectroscopy detection technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 699 Copy Citation Text show less
    References

    [1] Ezzell C. OSHA standards [J]. Nature, 1988, 333(6174): 590.

    [2] National Research Council. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants [M]. Washington, D.C.: National Academies Press, 2008.

    [3] Grosjean D, Grosjean E, Moreira L F R. Speciated ambient carbonyls in Rio de Janeiro, Brazil [J]. Environmental Science & Technology, 2002, 3(7): 1389-1395.

    [4] Zhang J, Lioy P J, He Q. Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvironments [J]. Environmental Science & Technology, 1994, 28(1): 146-152.

    [5] Carter W P L, Winer A M, Pitts J N. Major atmospheric sink for phenol and the cresols. Reaction with the nitrate radical [J]. Environmental Science & Technology, 1981, 15(7): 829-831.

    [6] Grosjean E, Grosjean D, Seinfeld J H. Atmospheric chemistry of 1-octene, 1-decene, and cyclohexene: Gas-phase carbonyl and peroxyacyl nitrate products [J]. Environmental Science & Technology, 1996, 30(3): 1038-1047.

    [7] Ho K F, Lee S C, Louie P K K, et al. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong [J]. Atmospheric Environment, 2002, 3(8): 1259-1265.

    [8] Li Q, Sritharathikhum P, Oshima M, et al. Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis [J]. Analytica Chimica Acta, 2008, 612(2): 165-172.

    [9] Viskari E L, Vartiainen M, Pasanen P. Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland [J]. Atmospheric Environment, 2000, 34(6): 917-923.

    [10] Tan P G, Yu Y B, Jiang H W, et al. Progress in research on compound of aldehyeds and ketons in air [J]. Advances in Environmental Science, 1999, 7(4): 19-23.

    [11] Feltham E J, Almond M J, Marston G, et al. Reactions of alkenes with ozone in the gas phase: A matrix-isolation study of secondary ozonides and carbonyl-containing reaction products [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 5(13): 2605-2616.

    [12] Fehsenfeld F, Calvert J, Fall R, et al. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry [J]. Global Biogeochemical Cycles, 1992, (4): 389-430.

    [13] Niki H, Maker P D, Savage C M, et al. Atmospheric ozone-olefin reactions [J]. Environmental Science & Technology, 1983, 17(7): 312A-322A.

    [14] Kamens R M, Gery M W, Jeffries H E, et al. Ozone-isoprene reactions: Product formation and aerosol potential [J]. International Journal of Chemical Kinetics, 1982, 14(9): 955-975.

    [15] Paulson S E, Seinfeld J H. Development and evaluation of a photooxidation mechanism for isoprene [J]. Journal of Geophysical Research Atmospheres, 1992, 972(D18): 20703-20715.

    [16] Ling Z H, Guo H, Chen G X, et al. Formaldehyde and acetaldehyde at different elevations in mountainous areas in Hong Kong [J]. Aerosol and Air Quality Research, 2016, 1(8): 1868-1878.

    [17] Leuchner M, Ghasemifard H, Lüpke M, et al. Seasonal and diurnal variation of formaldehyde and its meteorological drivers at the GAW site Zugspitze [J]. Aerosol and Air Quality Research, 2016, 1(3): 801-815.

    [18] Grosjean D. Formaldehyde and other carbonyls in Los Angeles ambient air [J]. Environmental & Science Technology, 1982, 1(5): 254-262.

    [19] Cooke M C, Utembe S R, Carbajo P G, et al. Impacts of formaldehyde photolysis rates on tropospheric chemistry [J]. Atmospheric Science Letters, 2010, 11(1): 33-38.

    [20] Abbot D S, Palmer P I, Martin R V, et al. Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space [J]. Geophysical Research Letters, 2003, 30(17): 339-346.

    [21] Martin R V, Parrish D D, Ryerson T B, et al. Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the Southeastern United States [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D24): D24307.

    [22] Nash T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction [J]. The Biochemical Journal, 1953, 55(3): 416-421.

    [23] Altshuller A P, Miller D L, Sleva S F. Determination of formaldehyde in gas mixtures by chromotropic acid method [J]. Analytical Chemistry, 1961, 33(4): 621-625.

    [24] Sawicki E, Hauser T R, McPherson S. Spectrophotometric determination of formaldehyde and formaldehyde-releasing compounds with chromotropic acid, 6-amino-1-naphthol-3-sulfonic Acid (J Acid), and 6-anilino-1-naphthol-3-sulfonic Acid (phenyl J Acid) [J]. Analytical Chemistry, 1962, 34(11): 1460-1464.

    [25] Zafiriou O C, Alford J, Herrera M, et al. Formaldehyde in remote marine air and rain: Flux measurements and estimates [J]. Geophysical Research Letters, 1980, 7(5): 341-344.

    [26] Selim S. Separation and quantitative-determination of traces of carbonyl-compounds as their 2, 4-dinitrophenylhydrazones by high-pressure liquid-chromatography [J]. Journal of Chromatography A, 1977, 13(2): 271-277.

    [27] Kuwata K, Uebori M, Yamasaki Y. Determination of aliphatic and aromatic-aldehydes in polluted airs as their 2, 4-dinitrophenylhydrazones by high-performance liquid-chromatography [J]. Journal of Chromatographic Science, 1979, 17(5): 264-268.

    [28] Lowe D C, Schmidt U. Formaldehyde (HCHO) measurements in the nonurban atmosphere [J]. Journal of Geophysical Research: Oceans, 1983, 88(C15): 10844-10858.

    [29] Lowe D C, Schmidt U, Ehhalt D H. A new technique for measuring tropospheric formaldehyde [CH2O] [J]. Geophysical Research Letters, 1980, 7(10): 825-828.

    [30] Fung K, Grosjean D. Determination of nanogram amounts of carbonyls as 2, 4-dinitrophenylhydrazones by high-performance liquid chromatography [J]. Analytical Chemistry, 1981, 53(2): 168-171.

    [31] Tanner R L, Meng Z K. Seasonal variations in ambient atmospheric levels of formaldehyde and acetaldehyde [J]. Environmental Science & Technology, 1984, 18(9): 723-726.

    [32] Lipari F, Swarin S J. 2, 4-Dinitrophenylhydrazine-coated Florisil sampling cartridges for the determination of formaldehyde in air [J]. Environmental Science & Technology, 1985, 19(1): 70-74.

    [33] Cofer W R, Edahl R A. A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde [J]. Atmospheric Environment, 1986, 20(5): 979-984.

    [34] Fushimi K, Miyake Y. Contents of formaldehyde in the air above the surface of the ocean [J]. Journal of Geophysical Research: Oceans, 1980, 85(C12): 7533-7536.

    [35] Wisthaler A, Apel E C, Bossmeyer J, et al. Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR [J]. Atmospheric Chemistry and Physics, 2008, 8(8): 2189-2200.

    [36] Junkermann W, Burger J M. A new portable instrument for continuous measurement of formaldehyde in ambient air [J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(1): 38-45.

    [37] Zhu M N, Dong H B, Yu F, et al. A new portable instrument for online measurements of formaldehyde: From ambient to mobile emission sources [J]. Environmental Science & Technology Letters, 2020, 7(5): 292-297.

    [38] Müller K. Determination of aldehydes and ketones in the atmosphere-A comparative long time study at an urban and a rural site in Eastern Germany [J]. Chemosphere, 1997, 35(9): 2093-2106.

    [39] Lindinger W, Jordan A. Proton-transfer-reaction mass spectrometry (PTR-MS): On-line monitoring of volatile organic compounds at pptv levels [J]. Chemical Society Reviews, 1998, 275(5): 347-375.

    [40] Warneke C, Veres P, Holloway J S, et al. Airborne formaldehyde measurements using PTR-MS: Calibration, humidity dependence, inter-comparison and initial results [J]. Atmospheric Measurement Techniques, 2011, 4(10): 2345-2358.

    [41] Yuan B, Koss A R, Warneke C, et al. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences [J]. Chemical Reviews, 2017, 117(21): 13187-13229.

    [42] Tuazon E C, Graham R A, Winer A M, et al. A kilometer pathlength Fourier-transform infrared system for the study of trace pollutants in ambient and synthetic atmospheres [J]. Atmospheric Environment, 1978, 12(4): 865-875.

    [43] Tuazon E C, Winer A M, Pitts J N. Trace pollutant concentrations in a multiday smog episode in the California South Coast Air Basin by long path length Fourier transform infrared spectroscopy [J]. Environmental Science & Technology, 1981, 15(10): 1232-1237.

    [44] Platt U, Perner D, Patz H W, et al. Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption [J]. Journal of Geophysical Research-Oceans and Atmospheres, 1979, 84(C10): 6329-6335.

    [45] Stutz J, Platt U. Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer [J]. Applied Optics, 1997, 3(6): 1105-1115.

    [46] Harris G W, Mackay G I, Iguchi T, et al. Measurements of formaldehyde in the troposphere by tunable diode laser absorption spectroscopy [J]. Journal of Atmospheric Chemistry, 1989, 8(2): 119-137.

    [47] Wert B P. Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements [J]. Journal of Geophysical Research Atmospheres, 2003, 108(D12): 4350.

    [48] Rella C, Hoffnagle J, Fleck D, et al. Quantification of atmospheric formaldehyde by near-infrared cavity ring-down spectroscopy [C]. Proceedings of the Agu Fall Meeting, 2018, 20: 11101.

    [49] Gorrotxategi-Carbajo P, Fasci E, Ventrillard I, et al. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit [J]. Applied Physics B, 2013, 110(3): 309-314.

    [50] Meller R, Moortgat G K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D6): 7089-7101.

    [51] Washenfelder R A, Attwood A R, Flores J M, et al. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde [J]. Atmospheric Measurement Techniques, 2016, 9(1): 41-52.

    [52] Peng F M, Xie P H, Zhang Y H, et al. Formaldehyde measurement in atmosphere with DOAS method [J]. Journal of Atmospheric and Environmental Optics, 2008, 3(1): 47-51.

    [53] Cárdenas L M, Brassington D J, Allan B J, et al. Intercomparison of formaldehyde measurements in clean and polluted atmospheres [J]. Journal of Atmospheric Chemistry, 2000, 37(1): 53-80.

    [54] Becker K H, Schurath U, Tatarczyk T. Fluorescence determination of low formaldehyde concentrations in air by dye laser excitation [J]. Applied Optics, 1975, 14(2): 310-313.

    [55] Liu J, Li X, Yang Y, et al. Sensitive detection of ambient formaldehyde by incoherent broadband cavity enhanced absorption spectroscopy [J]. Analytical Chemistry, 2020, 92(3): 2697-2705.

    [56] Perner D, Ehhalt D H, Paetz H W, et al. OH-Radicals in the lower troposphere [J]. Geophysical Research Letters, 1976, 3(8): 466-468.

    [57] Dooly G, Fitzpatrick C, Lewis E. Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques [J]. Sensors and Actuators B: Chemical, 2008, 134(1): 317-323.

    [58] Constantin D E, Merlaud A, Van Roozendael M, et al. Measurements of tropospheric NO2 in Romania using a Zenith-Sky mobile DOAS system and comparisons with satellite observations [J]. Sensors, 2013, 13(3): 3922-3940.

    [59] Li Y J, Xie P H, Qin M, et al. Study of retrieving formaldehyde with differential optical absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2009, 29(1): 196-200.

    [60] Lawson D R, Biermann H W, Tuazon E C, et al. Formaldehyde measurement methods evaluation and ambient concentrations during the carbonaceous species methods comparison study [J]. Aerosol Science and Technology, 1990, 12(1): 64-76.

    [61] Grutter M, Flores E, Andraca-Ayala G, et al. Formaldehyde levels in downtown Mexico City during 2003 [J]. Atmospheric Environment, 2005, 39(6): 1027-1034.

    [62] Heckel A, Richter A, Tarsu T, et al. MAX-DOAS measurements of formaldehyde in the Po-Valley [J]. Atmospheric Chemistry and Physics, 2005, 5(4): 909-918.

    [63] Schultz A, Cruse H W, Zare R N. Laser-induced fluorescence: A method to measure the internal state distribution of reaction products [J]. The Journal of Chemical Physics, 1972, 57(3): 1354-1355.

    [64] Sinha M P, Schultz A, Zare R N. Internal state distribution of alkali dimers in supersonic nozzle beams [J]. The Journal of Chemical Physics, 1973, 58(2): 549-556.

    [65] Cazorla M, Wolfe G M, Bailey S A, et al. A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere [J]. Atmospheric Measurement Techniques, 2015, 8(2): 541-552.

    [66] Mhlmann G R. Formaldehyde detection in air by laser-induced fluorescence [J]. Applied Spectroscopy, 1985, 39(1): 98-101.

    [67] Burkert A, Grebner D, Müller D, et al. Single-shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser-induced fluorescence [J]. Proceedings of the Combustion Institute, 2000, 28(2): 1655-1661.

    [68] Hottle J R, Huisman A J, DiGangi J P, et al. A laser induced fluorescence-based instrument for insitu measurements of atmospheric formaldehyde [J]. Environmental Science & Technology, 2009, 43(3): 790-795.

    [69] St Clair J M, Swanson A K, Bailey S A, et al. A new non-resonant laser-induced fluorescence instrument for the airborne in situ measurement of formaldehyde [J]. Atmospheric Measurement Techniques, 2017, 10(12): 4833-4844.

    [70] St Clair J M, Swanson A K, Bailey S A, et al. CAFE: A new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde [J]. Atmospheric Measurement Techniques, 2019, 12(8): 4581-4590.

    [71] Fiedler S E, Hoheisel G, Ruth A A, et al. Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet [J]. Chemical Physics Letters, 2003, 382(3-4): 447-453.

    [72] Grilli R, Méjean G, Kassi S, et al. Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels [J]. Environmental Science & Technology, 2012, 4(19): 10704-10710.

    [73] Grilli R, Méjean G, Abd Alrahman C, et al. Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise [J]. Physical Review A, 2012, 85(5): 051804.

    [74] Barry H, Corner L, Hancock G, et al. Cross sections in the 2ν5 band of formaldehyde studied by cavity enhanced absorption spectroscopy near 1.76 μm [J]. Physical Chemistry Chemical Physics, 2002, 4(3): 445-450.

    [75] Dahnke H, von Basum G, Kleinermanns K, et al. Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy [J]. Applied Physics B, 2002, 75(2/3): 311-316.

    [76] Mine Y, Melander N, Richter D, et al. Detection of formaldehyde using mid-infrared difference-frequency generation [J]. Applied Physics B, 1997, 65(6): 771-774.

    [77] Li Y Q. Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D16): D16S08.

    [78] Dong L, Yu Y J, Li C G, et al. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell [J]. Optics Express, 2015, 23(15): 19821-19830.

    [79] Fried A, Sewell S, Henry B, et al. Tunable diode laser absorption spectrometer for ground-based measurements of formaldehyde [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D5): 6253-6266.

    [80] Zhou W D, Ren Z J, Peng B J, et al. Measurement of formaldehyde in gas mixture using cavity ring-down spectroscopy [J]. Journal of Zhejiang Normal University (Natural Sciences), 2007, 30(1): 11-15.

    [81] Peltola J, Vainio M, Ulvila V, et al. Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator [J]. Applied Physics B, 2012, 107(3): 839-847.

    [82] Lundqvist S, Kluczynski P, Weih R, et al. Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm [J]. Applied Optics, 2012, 51(25): 6009-6013.

    [83] Wert B P, Fried A, Henry B, et al. Airborne measurements of tropospheric formaldehyde by tunable diode laser absorption spectroscopy [C]. Proceedings of SPIE, 1996, 2834.

    [84] Fried A, Sewell S D, Henry B E, et al. Ground-based tunable diode laser measurements of formaldehyde: Improvements in system performance and recent field campaigns [C]. Proceedings of SPIE, 1996, 2834.

    [85] Friedfeld S, Fraser M, Lancaster D, et al. Field intercomparison of a novel optical sensor for formaldehyde quantification [J]. Geophysical Research Letters, 2000, 27(14): 2093-2096.

    [86] Fried A, Wert B P, Walega J G, et al. Airborne measurements of formaldehyde employing a high-performance tunable diode laser absorption system [C]. Proceedings of SPIE, 2002, 4817: 177-183.

    [87] Fried A, Lee Y N, Frost G, et al. Airborne CH2O measurements over the North Atlantic during the 1997 NARE campaign: Instrument comparisons and distributions [J]. Journal of Geophysical Research Atmospheres, 2002, 107(D4): ACH1-1-ACH -21.

    [88] Fried A, Wang Y H, Cantrell C, et al. Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons [J]. Journal of Geophysical Research Atmospheres, 2003, 108(D4): 8365-8377.

    [89] Fried A, Crawford J, Olson J, et al. Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons [J]. Journal of Geophysical Research Atmospheres, 2003, 108(D20): 8798-8816.

    [90] Chen J H, So S, Lee H S, et al. Atmospheric formaldehyde monitoring in the greater Houston area in 2002 [J]. Applied Spectroscopy, 2004, 58(2): 243-247.

    [91] Weibring P, Richter D, Fried A, et al. Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance [J]. Applied Physics B, 2006, 85(2/3): 207-218.

    [92] Weibring P, Richter D, Walega J G, et al. Difference frequency generation spectrometer for simultaneous multispecies detection [J]. Optics Express, 2010, 18(26): 27670-27681.

    [93] Fang B, Yang N N, Zhao W, et al. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels [J]. Applied Optics, 2019, 58(32): 8743-8750.

    [94] Catoire V, Bernard F, Mébarki Y, et al. A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation [J]. Journal of Environmental Sciences, 2012, 24(001): 22-33.

    [95] Schiller C L, Bozem H, Gurk C, et al. Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO [J]. Applied Physics B, 2008, 92(3): 419-430.

    [96] Herndon S C, Zahniser M S, Nelson D D, et al. Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer [J]. Journal of Geophysical Research Atmospheres, 2007, 112(D10S03): 1-15.

    [97] Gorrotxategi-carbajo P, Fasci E, Ventrillard I, et al. Optical-feedback cavity-enhanced absorption spectroscopy with a quantum-cascade laser yields the lowest formaldehyde detection limit [J]. Applied Physics B, 2013, 110(3): 309-314.

    [98] Chen B, Wang J, Sun Y R, et al. Broad-range detection of water vapor using cavity ring-down spectrometer [J]. Chinese Journal of Chemical Physics, 2015, 28(4): 440-444.

    [99] Li Z B, Ma H L, Cao Z S, et al. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm [J]. Acta Physica Sinica, 2016, 65(5): 69-75.

    [100] Lancaster D G, Fried A, Wert B, et al. Difference-frequency-based tunable absorption spectrometer for detection of atmospheric formaldehyde [J]. Applied Optics, 2000, 39(24): 4436-4443.

    [101] Fried A, Henry B, Wert B, et al. Laboratory, ground-based, and airborne tunable diode laser systems: Performance characteristics and applications in atmospheric studies [J]. Applied Physics B, 1998, 67(3): 317-330.

    [102] Richter D, Fried A, Wert B P, et al. Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection [J]. Applied Physics B, 2002, 75(2-3): 281-288.

    [103] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser [J]. Science, 1994, 264(5158): 553-556.

    [104] Zhou W J, Wu D H, McClintock R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers [J]. Optica, 2017, 4(10): 1228-1231.

    [105] Rauter P, Capasso F. Multi-wavelength quantum cascade laser arrays [J]. Laser & Photonics Reviews, 2015, 9(5): 452-477.

    [106] Razeghi M, Bandyopadhyay N, Bai Y B, et al. Recent advances in mid infrared (3-5 μm) quantum cascade lasers [J]. Optical Materials Express, 2013, 3(11): 1872-1884.

    [107] Bandyopadhyay N, Bai Y, Tsao S, et al. Room temperature continuous wave operation of λ~3-3.2μm quantum cascade lasers [J]. Applied Physics Letters, 2012, 101(24): 241110.

    [108] Wolf J M, Bismuto A, Beck M, et al. Distributed-feedback quantum cascade laser emitting at 3.2 μm [J]. Optics Express, 2014, 22(2): 2111-2118.

    [109] Lu Q Y, Razeghi M, Slivken S, et al. High power frequency comb based on mid-infrared quantum cascade laser at λ~9μm [J]. Applied Physics Letters, 2015, 10(5): 051105.

    [110] Hinkley E D, Kelley P L. Detection of air pollutants with tunable diode lasers [J]. Science, 1971, 171(3972): 635-639.

    [111] Hansch T W, Shahin I S, Schawlow A L. Laser saturation spectroscopy of atoms [J]. IEEE Journal of Quantum Electronics, 1972, 8(6): 561.

    [112] Hinkley E D. Tunable infra-red lasers and their applications to air pollution measurements [J]. Opto-electronics, 1972, 4(2): 69-86.

    [113] Slemr F, Harris G W, Hastie D R, et al. Measurement of gas phase hydrogen peroxide in air by tunable diode laser absorption spectroscopy [J]. Journal of Geophysical Research: Atmospheres, 1986, 91(D5): 5371-5378.

    [114] Sewell S D, Fried A, Henry B E, et al. Field diode-laser spectrometer employing an astigmatic Herriott cell [C]. Proceedings of SPIE, 1994, 2112.

    [115] Zahniser M S, Nelson D D, Mcmanus J B, et al. Measurement of trace gas fluxes using tunable diode-laser spectroscopy [J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 1995, 351(1696): 371-381.

    [116] Harder J W, Fried A, Sewell S, et al. Comparison of tunable diode laser and long-path ultraviolet/visible spectroscopic measurements of ambient formaldehyde concentrations during the 1993 OH Photochemistry Experiment [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D5): 6267-6282.

    [117] MacKay G I, Karecki D R, Schiff H I, et al. Tunable diode laser absorption measurements of H2O2 and HCHO during the Mauna Loa Observatory Photochemistry Experiment [J]. Journal of Geophysical Research Atmospheres, 1996, 101(D9): 126-137.

    [118] Mücke R, Scheumann B, Slemr J, et al. Measurements of formaldehyde by tunable diode laser spectroscopy and the enzymatic-fluorometric method: An intercomparison study [J]. Infrared Physics & Technology, 1996, 37(1): 29-32.

    [119] Fried A, Weibring P, Richter D, et al. Tunable diode laser and difference frequency generation absorption spectrometers for highly sensitive airborne measurements of trace atmospheric constituents [C]. Proceedings of SPIE, 2006, 6378: 63780F.

    [120] McManus J B, Zahniser M S, Nelson D D. Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number [J]. Applied Optics, 2011, 50(4): A74-A85.

    [121] Catoire V, Bernard F, Mébarki Y, et al. A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation [J]. Journal of Environmental Sciences, 2012, 24(1): 22-33.

    [122] Robert C. Simple, stable, and compact multiple-reflection optical cell for very long optical paths [J]. Applied Optics, 2007, 4(22): 5408-5418.

    [123] Krzempek K, Jahjah M, Lewicki R, et al. CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell [J]. Applied Physics B, 2013, 112(4): 461-465.

    [124] Overton G. METROLOGY: New multipass gas cells beat conventional designs [J]. Laser Focus World, 2013, 49(8): 17-18.

    [125] Li C G, Dong L, Wang Y D, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL [J]. Optics and Precision Engineering, 2018, 2(8): 1855-1861.

    [126] Yu Z W, Pan Y J, Wang Q, et al. Application of Fourier infrared spectroscopy in detection of malodorous gases [J]. China Instrumentation, 2019, 2: 38-40.

    [127] Li X X, Xu L, Gao M G, et al. Fourier transform infrared greenhouse analyzer for gases and carbon isotope ratio [J]. Optics and Precision Engineering, 2014, 22(9): 2359-2368.

    [128] Horn D, Pimentel G C. 2.5 km low-temperature multiple-reflection cell [J]. Applied Optics, 1971, 10(8): 1892-1898.

    [129] Hak C, Pundt I, Trick S, et al. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air [J]. Atmospheric Chemistry and Physics, 2005, 5(11): 2881-2900.

    [130] Suarez-Bertoa R, Clairotte M, Arlitt B, et al. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC [J]. Fuel, 2017, 203: 330-340.

    [131] Herbelin J M, McKay J A, Kwok M A, et al. Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method [J]. Applied Optics, 1980, 19(1): 144-147.

    [132] Anderson D Z, Frisch J C, Masser C S. Mirror reflectometer based on optical cavity decay time [J]. Applied Optics, 1984, 23(8): 1238-1245.

    [133] O’Keefe A, Deacon D A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources [J]. Review of Scientific Instruments, 1988, 59(12): 2544-2551.

    [134] Romanini D, Kachanov A A, Sadeghi N, et al. CW cavity ring down spectroscopy [J]. Chemical Physics Letters, 1997, 264(3-4): 316-322.

    [135] Kleine D, Mürtz M, Lauterbach J, et al. Atmospheric trace gas analysis with cavity ring-down spectroscopy [J]. Israel Journal of Chemistry, 2001, 41(2): 111-116.

    [136] Dahnke H, von Basum G, Kleinermanns K, et al. Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy [J]. Applied Physics B, 2002, 75(2-3): 311-316.

    [137] Konopel’ko L A, Beloborodov V V, Rumyantsev D V, et al. Metrological problems of gas analyzers based on wavelength-scanned cavity ring-down spectroscopy [J]. Optics and Spectroscopy, 2015, 118(6): 1017-1022.

    [138] John H, Fleck D, Rella C, et al. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy [C]. Proceedings of the Agu Fall Meeting, 2017, 19: 8972.

    [139] O’Keefe A. Integrated cavity output analysis of ultra-weak absorption [J]. Chemical Physics Letters, 1998, 293(5-6): 331-336.

    [140] Engeln R, Berden G, Peeters R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Review of Scientific Instruments, 1998, 69(11): 3763-3769.

    [141] Paul J B, Lapson L, Anderson J G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment [J]. Applied Optics, 2001, 40(27): 4904-4910.

    [142] Miller J H, Bakhirkin Y A, Ajtai T, et al. Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser [J]. Applied Physics B, 2006, 85(2-3): 391-396.

    [143] He Q X, Zheng C T, Lou M H, et al. Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H2CO detection using a radio-frequency electrically-modulated interband cascade laser [J]. Optics Express, 2018, 2(12): 15436-15444.

    [144] Maddaloni P, Gagliardi G, Malara P, et al. Off-axis integrated-cavity-output spectroscopy for trace-gas concentration measurements: Modeling and performance [J]. Journal of the Optical Society of America B, 2006, 23(9): 1938-1945.

    [145] Heikes B, McCully B, Zhou X, et al. Formaldehyde methods comparison in the remote lower troposphere during the Mauna Loa photochemistry experiment 2 [J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D9): 14741-14755.

    [146] Roller C, Fried A, Walega J, et al. Advances in hardware, system diagnostics software, and acquisition procedures for high performance airborne tunable diode laser measurements of formaldehyde [J]. Applied Physics B, 2006, 82(2): 247-264.

    [147] Yao C, Wang Z, Wang Q, et al. Interband cascade laser absorption sensor for real-time monitoring of formaldehyde filtration by a nanofiber membrane [J]. Applied Optics, 2018, 57(27): 8005-8010.

    [148] Peltola J, Vainio M, Ulvila V, et al. Off-axis re-entrant cavity ring-down spectroscopy with a mid-infrared continuous-wave optical parametric oscillator [J]. Applied Physics B, 2012, 107(3): 839-847.

    [149] Peltola J, Vainio M, Ulvila V, et al. Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser [J]. Applied Physics B, 2006, 85(2-3): 391-396.

    [150] Dong S, Dasgupta P K. Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde [J]. Environmental Science & Technology, 1986, 20(6): 637-640.

    [151] Wang M H, Xie P H, Qin M, et al. Atmospheric HCHO gradient monitoring and analysis in Beijing city with a scanning DOAS system [J]. Spectroscopy and Spectral Analysis, 2011, 31(3): 789-792.

    [152] Hamill P, Iraci L T, Yates E L, et al. A new instrumented airborne platform for atmospheric research [J]. Bulletin of the American Meteorological Society, 2016, 97(3): 397-404.

    [153] Glowania M, Rohrer F, Dorn H P, et al. Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber [J]. Atmospheric Measurement Techniques, 2021, 14(6): 4239-4253.

    [154] Rivera Cárdenas C, Guarín C, Stremme W, et al. Formaldehyde total column densities over Mexico City: comparison between multi-axis differential optical absorption spectroscopy and solar-absorption Fourier transform infrared measurements [J]. Atmospheric Measurement Techniques, 2021, 14(1): 595-613.

    [155] Xu Z, Cao Y N, Zhang R R, et al. Design and analysis of a novel multipass cell based on two plane mirrors for laser absorption spectroscopy [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 405-411.

    [156] Ma Y F, He Y, Tong Y, et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection [J]. Optics Express, 2018, 2(24): 32103-32110.

    [157] Ma Y F, Lewicki R, Razeghi M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL [J]. Optics Express, 2013, 21(1): 1008-1019.

    WU Tao, HU Renzhi, XIE Pinhua, WANG Jiawei, LIU Wenqing. Research progress of atmospheric HCHO spectroscopy detection technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 699
    Download Citation