• Advanced Photonics
  • Vol. 5, Issue 3, 034003 (2023)
Etienne Brasselet*
Author Affiliations
  • University of Bordeaux, CNRS, Laboratoire Ondes et Matière d’Aquitaine, Talence, France
  • show less
    DOI: 10.1117/1.AP.5.3.034003 Cite this Article Set citation alerts
    Etienne Brasselet. Torsion pendulum driven by the angular momentum of light: Beth’s legacy continues[J]. Advanced Photonics, 2023, 5(3): 034003 Copy Citation Text show less
    References

    [1] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [3] A. I. Sadovskiĭ(1897).

    [4] K. S. Vul’fson. Angular momentum of electromagnetic waves. Sov. Phys. Usp., 30, 724(1987).

    [5] A. Righi. Sulle oscillazioni elettriche a piccola lunghezza d’onda e sul loro impiego nella produzione di fenomeni analoghi ai principali fenomeni dell’ottica(1894).

    [6] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. London A, 82, 560-567(1909).

    [7] R. A. Beth. Direct detection of the angular momentum of light. Phys. Rev., 48, 471(1935).

    [8] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2013).

    [9] A. H. S. Holbourn. Angular momentum of circularly polarized light. Nature, 137, 31(1936).

    [10] A. Righi. Sur les changements de longueur d’onde obtenus par la rotation d’un polariseur, et sur le phénomène des battements produits avec les vibrations lumineuses. J. Phys. Theor. Appl., 2, 437-446(1883).

    [11] J. Courtial et al. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 80, 3217-3219(1998).

    [12] J. Courtial et al. Rotational frequency shift of a light beam. Phys. Rev. Lett., 81, 4828-4830(1998).

    [13] E. Henriot. Les couples exercés par la lumière polarisée circulairement. Comptes rendus de l’Académie des sciences, 198, 1146(1934).

    [14] R. D. E. Atkinson. Energy and angular momentum in certain optical problems. Phys. Rev., 47, 623-627(1935).

    [15] N. Carrara. Torque and angular momentum of centimetre electromagnetic waves. Nature, 164, 882-884(1949).

    [16] G. T. Di Francia. On a macroscopic measurement of the spin of electromagnetic radiation. Il Nuovo Cimento, 6, 150-167(1957).

    [17] P. Allen. A radiation torque experiment. Am. J. Phys., 34, 1185-1192(1966).

    [18] D. H. Steven, A. L. Cullen. Angular-momentum wattmeter for the 8 mm waveband. Proc. Inst. Electr. Eng., 110, 1968-1974(1963).

    [19] A. L. Cullen. Absolute power measurement at microwave frequencies. Proc. IEE-Part IV Inst. Monographs, 99, 100-111(1952).

    [20] G. D. Bruce, P. Rodríguez-Sevilla, K. Dholakia. Initiating revolutions for optical manip-ulation: the origins and applications of rotational dynamics of trapped particles. Adv. Phys. X, 6, 1838322(2021).

    [21] M. Kristensen, M. W. Beijersbergen, J. P. Woerdman. Angular momentum and spin-orbit coupling for microwave photons. Opt. Commun., 104, 229-233(1994).

    [22] S. Carusotto, G. Fornaca, E. Polacco. Radiation beats and rotating systems. Il Nuovo Cimento B, 53, 87-97(1968).

    [23] O. Emile et al. Electromagnetically induced torque on a large ring in the microwave range. Phys. Rev. Lett., 112, 053902(2014).

    [24] Y. Mao, Y. Liu, H. Lin. Angular momenta in fields from a rotational mechanical antenna. J. Phys. Commun., 5, 125012(2021).

    [25] F. S. Chute. The possibility of using electromagnetic angular momentum to stabilize a space vehicle(1966).

    [26] F. Chute. The reaction torque on an axial multipole radiator. IEEE Trans. Antenn. Propag., 15, 585-587(1967).

    [27] F. S. Chute, G. B. Walker. The possibility of stabilizing a space vehicle using electromagnetic angular momentum. Can. Aero. Space J., 11, 219(1965).

    [28] H. Barlow. Measurement of power by absorption of the angular momentum of a circularly polarized wave. Proc. Inst. Electr. Eng., 110, 865-868(1963).

    [29] G. Delannoy, O. Emile, A. Le Floch. Direct observation of a photon spin-induced constant acceleration in macroscopic systems. Appl. Phys. Lett., 86, 081109(2005).

    [30] R. Yasuda, A. Hatakeyama. Characterization of a double torsion pendulum used to detect spin-induced torque based on Beth’s experiment. Rev. Sci. Instrum., 92, 105108(2021).

    [31] L. He, H. Li, M. Li. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Sci. Adv., 2, e1600485(2016).

    [32] E. F. Fenton, A. Khan, P. Solano et al. Spin-optomechanical coupling between light and a nanofiber torsional mode. Opt. Lett., 43, 1534-1537(2018).

    [33] D. Su et al. Torsional optomechanical cooling of a nanofiber. Photonics Res., 10, 601-609(2022).

    [34] F. Tebbenjohanns et al. Feedback-cooling the fundamental torsional mechanical mode of a tapered optical fiber to 30 mK(2023).

    [35] W. Li et al. Dynamics of angular momentum-torque conversion in silicon waveguides. Opt. Express, 27, 10208-10220(2019).

    [36] M. W. Beijersbergen, J. Woerdman. Measuring orbital angular momentum of light with a torsion pendulum. Proc. SPIE, 5736, 111-126(2005).

    [37] O. Emile, J. Emile. Energy, linear momentum, and angular momentum of light: what do we measure?. Ann. der Phys., 530, 1800111(2018).

    [38] S. Van Enk, G. Nienhuis. Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun., 94, 147-158(1992).

    [39] M. W. Beijersbergen et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun., 96, 123-132(1993).

    [40] H. Kaviani et al. Optomechanical detection of light with orbital angular momentum. Opt. Express, 28, 15482-15496(2020).

    [41] M. Bhattacharya, P. Meystre. Using a Laguerre-Gaussian beam to trap and cool the rotational motion of a mirror. Phys. Rev. Lett., 99, 153603(2007).

    [42] M. Bhattacharya, P.-L. Giscard, P. Meystre. Entanglement of a Laguerre-Gaussian cavity mode with a rotating mirror. Phys. Rev. A, 77, 013827(2008).

    [43] H.-J. Cheng et al. Tripartite entanglement in a Laguerre-Gaussian rotational-cavity system with an yttrium iron garnet sphere. J. Opt. Soc. Am. B, 38, 285-293(2021).

    [44] Z. Chen et al. Entanglement of two rotating mirrors coupled to a single Laguerre-Gaussian cavity mode. Opt. Express, 27, 29479-29490(2019).

    [45] E. Santamato et al. Collective rotation of molecules driven by the angular momentum of light in a nematic film. Phys. Rev. Lett., 57, 2423-2426(1986).

    [46] A. S. Zolot’ko, V. F. Kitaeva, V. Y. Fedorovich. Self-effect of a circularly polarized light wave in homeotropically oriented nematic liquid crystal, 326(1986).

    [47] E. Santamato et al. Laser-induced nonlinear dynamics in a nematic liquid crystal film. Phys. Rev. Lett., 64, 1377-1380(1990).

    [48] B. Piccirillo et al. Orbital and spin photon angular momentum transfer in liquid crystals. Phys. Rev. Lett., 86, 2285-2288(2001).

    [49] D. O. Krimer, E. Brasselet. Light-driven liquid-crystalline nonlinear oscillator under optical periodic forcing. Phys. Rev. E, 76, 021705(2007).

    [50] K. D. Bonin, B. Kourmanov, T. G. Walker. Light torque nanocontrol, nanomotors, and nanorockers. Opt. Express, 10, 984-989(2002).

    [51] T. M. Hoang et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett., 117, 123604(2016).

    [52] J. Ahn et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [53] O. Romero-Isart et al. Toward quantum superposition of living organisms. New J. Phys., 12, 033015(2010).

    [54] H. Shi, M. Bhattacharya. Coupling a small torsional oscillator to large optical angular momentum. J. Mod. Opt., 60, 382-386(2013).

    [55] A. Pontin et al. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle. Nat. Phys.(2023).

    [56] H. Magallanes, E. Brasselet. Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques. Nat. Photonics, 12, 461-464(2018).

    [57] B. T. Hefner, P. L. Marston. An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems. J. Acoust. Soc. Am., 106, 3313-3316(1999).

    [58] B. Sanchez-Padilla, E. Brasselet. Torsional mechanical oscillator driven by the orbital angular momentum of sound. Phys. Rev. Appl., 13, 064069(2020).

    [59] K. Volke-Sepúlveda, A. O. Santillan, R. R. Boullosa. Transfer of angular momentum to matter from acoustical vortices in free space. Phys. Rev. Lett., 100, 024302(2008).

    [60] K. D. Skeldon et al. An acoustic spanner and its associated rotational Doppler shift. New J. Phys., 10, 013018(2008).

    [61] N. Jiménez, J. M. Benlloch, F. Camarena. A new elastographic technique using acoustic vortices, 1-4(2020).

    [62] E. González-Mateo, N. Jiménez, F. Camarena. Quasi-omnidirectional shear wave generation using acoustic vortices for elastography, 1-4(2022).

    [63] M. Croquette et al. Recent advances toward mesoscopic quantum optomechanics. AVS Quantum Sci., 5, 014403(2023).

    Etienne Brasselet. Torsion pendulum driven by the angular momentum of light: Beth’s legacy continues[J]. Advanced Photonics, 2023, 5(3): 034003
    Download Citation