• Laser & Optoelectronics Progress
  • Vol. 61, Issue 17, 1723002 (2024)
Rui Xing1, Yongzhi Cheng1,3,4,**, Hui Luo1,3,4, Fu Chen1,3,4, and Xiangcheng Li2,3,4,*
Author Affiliations
  • 1School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 2State Key Laboratory of Refractory Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 3Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE, Wuhan University of Science and Technology, Wuhan 430081, Hubei, China
  • 4Hubei Longzhong Laboratory, Xiangyang441000, Hubei, China
  • show less
    DOI: 10.3788/LOP232654 Cite this Article Set citation alerts
    Rui Xing, Yongzhi Cheng, Hui Luo, Fu Chen, Xiangcheng Li. Pseudo-Waveform-Selective Metasurface Absorber Based on Linear Circuits[J]. Laser & Optoelectronics Progress, 2024, 61(17): 1723002 Copy Citation Text show less
    References

    [1] Holloway C L, Kuester E F, Gordon J A et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 54, 10-35(2012).

    [2] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016).

    [3] Zhao J C, Li N, Cheng Y Z. Ultrabroadband chiral metasurface for linear polarization conversion and asymmetric transmission based on enhanced interference theory[J]. Chinese Optics Letters, 21, 113602(2023).

    [4] Li D M, Wang J Y, Su X Q et al. Switchable broadband polarization conversion metasurface based on PIN diodes[J]. Chinese Journal of Lasers, 49, 0303001(2022).

    [5] Hu M X, Wang Z Q, Li X P et al. Metasurface polarization information encoding[J]. Chinese Journal of Lasers, 50, 1813010(2023).

    [6] Sun Y W, He N, Zhang Z et al. Absorbing metasurfaces and their applications in the mid-infrared band[J]. Acta Optica Sinica, 42, 1704001(2022).

    [7] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [8] Cheng Y Z, Yang H L, Cheng Z Z et al. Perfect metamaterial absorber based on a split-ring-cross resonator[J]. Applied Physics A, 102, 99-103(2011).

    [9] Ding F, Cui Y X, Ge X C et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 100, 103506(2012).

    [10] Ghosh S, Bhattacharyya S, Chaurasiya D et al. An ultrawideband ultrathin metamaterial absorber based on circular split rings[J]. IEEE Antennas and Wireless Propagation Letters, 14, 1172-1175(2015).

    [11] Li W, Wei J, Wang W et al. Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range[J]. Materials & Design, 110, 27-34(2016).

    [12] Cheng Y Z, Chen D F, Cheng J L et al. A miniaturized S-band metamaterial absorber based on lumped resistors[J]. Journal of Microwaves, 33, 25-30, 96(2017).

    [13] Zhou Y G, Li M Q, Pan X. Broadband absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 54, 121602(2017).

    [14] Feng K S, Li N, Li T. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices[J]. Acta Physica Sinica, 71, 034101(2022).

    [15] Hao H G, Ding T Y, Luo W et al. Design of novel broadband microwave absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 55, 061604(2018).

    [16] Luo H, Xiong Y, Cheng Y Z et al. Optical transparent metamaterial structure for microwave-infrared-compatible camouflage based on indium tin oxide[J]. Science China Technological Sciences, 66, 2850-2861(2023).

    [17] Zhang Y Q, Li H N, Ge J H et al. Highly visible-NIR transparent metamaterial-window for broadband microwave absorption and shielding[J]. Advanced Materials Technologies, 8, 2370124(2023).

    [18] Wakatsuchi H, Kim S, Rushton J J et al. Waveform-dependent absorbing metasurfaces[J]. Physical Review Letters, 111, 245501(2013).

    [19] Wakatsuchi H. Waveform-selective metasurfaces with free-space wave pulses at the same frequency[J]. Journal of Applied Physics, 117, 164904(2015).

    [20] Wakatsuchi H, Anzai D, Rushton J J et al. Waveform selectivity at the same frequency[J]. Scientific Reports, 5, 9639(2015).

    [21] Wakatsuchi H, Long J, Sievenpiper D F. Waveform selective surfaces[J]. Advanced Functional Materials, 29, 1806386(2019).

    [22] Cheng Y Z, Qian Y J, Li Z R et al. The design of metasurface absorber based on the ring-shaped resonator lumped with nonlinear circuit for a pulse wave[J]. Journal of Electronics & Information Technology, 45, 3812-3820(2023).

    [23] Cheng Y Z, Qian Y J, Homma H et al. Waveform-selective metasurface absorber with a single-patch structure and lumped nonlinear circuit for a higher-order mode[J]. IEEE Transactions on Antennas and Propagation, 71, 8677-8691(2023).

    [24] Nakasha T, Phang S, Wakatsuchi H. Pseudo-waveform-selective metasurfaces and their limited performance[J]. Advanced Theory and Simulations, 4, 2000187(2021).

    [25] Wakatsuchi H. Time-domain filtering of metasurfaces[J]. Scientific Reports, 5, 16737(2015).

    [26] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 48, 1230-1234(2000).

    [27] Homma H, Akram M R, Fathnan A A et al. Anisotropic impedance surfaces activated by incident waveform[J]. Nanophotonics, 11, 1989-2000(2022).

    Rui Xing, Yongzhi Cheng, Hui Luo, Fu Chen, Xiangcheng Li. Pseudo-Waveform-Selective Metasurface Absorber Based on Linear Circuits[J]. Laser & Optoelectronics Progress, 2024, 61(17): 1723002
    Download Citation