• Advanced Photonics
  • Vol. 3, Issue 5, 055001 (2021)
Matthew Parry1、2、*, Andrea Mazzanti1、3, Alexander Poddubny1、4、5, Giuseppe Della Valle3、6, Dragomir N. Neshev1、2, and Andrey A. Sukhorukov1、2、*
Author Affiliations
  • 1Australia National University, Research School of Physics, Canberra, Australia
  • 2ARC Centre of Excellence for Transformative Meta-Optical Systems, Canberra, Australia
  • 3Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
  • 4ITMO University, Department of Physics, Saint Petersburg, Russia
  • 5Ioffe Institute, Saint Petersburg, Russia
  • 6Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
  • show less
    DOI: 10.1117/1.AP.3.5.055001 Cite this Article Set citation alerts
    Matthew Parry, Andrea Mazzanti, Alexander Poddubny, Giuseppe Della Valle, Dragomir N. Neshev, Andrey A. Sukhorukov. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(5): 055001 Copy Citation Text show less
    References

    [1] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2, 17010(2017).

    [2] C. De Angelis, G. Leo, D. N. Neshev. Nonlinear Meta-Optics(2020).

    [3] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [4] M. V. Rybin et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [5] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [6] Z. J. Liu et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [7] K. Koshelev et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [8] P. P. Vabishchevich et al. Enhanced second-harmonic generation using broken symmetry III-V semiconductor Fano metasurfaces. ACS Photonics, 5, 1685-1690(2018).

    [9] L. Carletti et al. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt. Express, 27, 33391-33398(2019).

    [10] Z. Huang et al. Highly efficient second harmonic generation of thin film lithium niobate nanograting near bound states in the continuum. Nanotechnology, 32, 325207(2021).

    [11] C. De Angelis, A. N. Poddubny, G. Leo, D. N. Neshev, D. N. Neshev, A. A. Sukhorukov. Quantum nonlinear metasurfaces. Nonlinear Meta-Optics, 147-180(2020).

    [12] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327-336(2021).

    [13] M. G. Basset et al. Perspectives for applications of quantum imaging. Laser Photonics Rev., 13, 1900097(2019).

    [14] F. Steinlechner et al. Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun., 8, 15971(2017).

    [15] A. Orieux et al. Direct Bell states generation on a III-V semiconductor chip at room temperature. Phys. Rev. Lett., 110, 160502(2013).

    [16] M. J. Collins et al. Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun., 4, 2582(2013).

    [17] G. Marino et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica, 6, 1416-1422(2019).

    [18] T. Santiago-Cruz et al. Photon pairs from resonant metasurfaces. Nano Lett., 21, 4423-4429(2021).

    [19] H. D. Saleh et al. Towards spontaneous parametric down conversion from monolayer MoS2. Sci. Rep., 8, 3862(2018). https://doi.org/10.1038/s41598-018-22270-4

    [20] K. F. Lee et al. Photon-pair generation with a 100 nm thick carbon nanotube film. Adv. Mater., 29, 1605978(2017).

    [21] A. Nikolaeva et al. Directional emission of down-converted photons from a dielectric nanoresonator. Phys. Rev. A, 103, 043703(2021).

    [22] C. Okoth et al. Microscale generation of entangled photons without momentum conservation. Phys. Rev. Lett., 123, 263602(2019).

    [23] C. Okoth et al. Idealized Einstein–Podolsky–Rosen states from non-phase-matched parametric down-conversion. Phys. Rev. A, 101, 011801(R)(2020).

    [24] T. Santiago-Cruz et al. Entangled photons from subwavelength nonlinear films. Opt. Lett., 46, 653-656(2021).

    [25] A. N. Poddubny, D. A. Smirnova. Nonlinear generation of quantum-entangled photons from high-Q states in dielectric nanoparticles(2018).

    [26] T. C. Wang et al. “Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum. Photonics Res., 7, 341-350(2019).

    [27] L. Li et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 368, 1487-1490(2020).

    [28] J. Ma et al. Resonantly tunable second harmonic generation from lithium niobate metasurfaces(2020).

    [29] Z. J. Huang et al. Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation. Nanomaterials (Basel), 9, 69(2019).

    [30] A. Fedotova et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett., 20, 8608-8614(2020).

    [31] L. Carletti et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 033903(2018).

    [32] A. N. Poddubny et al. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials. Phys. Rev. Lett., 117, 123901(2016).

    [33] F. Lenzini et al. Direct characterization of a nonlinear photonic circuit’s wave function with laser light. Light Sci. Appl., 7, 17143(2018).

    [34] M. S. Bin-Alam et al. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [35] L. Carletti et al. Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas. Nanotechnology, 28, 114005(2017).

    [36] D. Schattschneider. Plane symmetry groups—their recognition and notation. Am. Math. Monthly, 85, 439-450(1978).

    [37] J. D. Sautter et al. Tailoring second-harmonic emission from (111)-GaAs nanoantennas. Nano Lett., 19, 3905-3911(2019).

    [38] S. Buckley et al. Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations. ACS Photonics, 1, 516-523(2014).

    [39] Y. J. Lu, Z. Y. Ou. Optical parametric oscillator far below threshold: experiment versus theory. Phys. Rev. A, 62, 033804(2000).

    [40] M. V. Fedorov, N. I. Miklin. Schmidt modes and entanglement. Contemp. Phys., 55, 94-109(2014).

    [41] I. Lankham, B. Nachtergaele, A. Schilling. Linear Algebra as an Introduction to Abstract Mathematics(2016).

    [42] P. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum Computing(2007).

    Matthew Parry, Andrea Mazzanti, Alexander Poddubny, Giuseppe Della Valle, Dragomir N. Neshev, Andrey A. Sukhorukov. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces[J]. Advanced Photonics, 2021, 3(5): 055001
    Download Citation