• Journal of Inorganic Materials
  • Vol. 36, Issue 11, 1125 (2021)
Linyan ZHAO1, Yangsi LIU1、2、3, Xiaoli XI1、2、4、*, Liwen MA1、2, and Zuoren NIE1、2、4
Author Affiliations
  • 11. Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 22. National Engineering Laboratory for Industrial Big-data Application Technology, Beijing University of Technology, Beijing 100124, China
  • 33. Beijing GUYUE New Materials Research Institute Beijing 100124, China
  • 44. Collaborative Innovation Center of Capital Resource-Recycling Material Technology, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.15541/jim20200683 Cite this Article
    Linyan ZHAO, Yangsi LIU, Xiaoli XI, Liwen MA, Zuoren NIE. First-principles Study on Nanoscale Tungsten Oxide: a Review[J]. Journal of Inorganic Materials, 2021, 36(11): 1125 Copy Citation Text show less
    References

    [1] T YIN X, P LV, J LI et al. Nanostructured tungsten trioxide prepared at various growth temperatures for sensing applications. Journal of Alloys and Compounds, 825, 154105(2020).

    [2] D NANDIYANTO A B, R OKTIANI, R RAGADHITA et al. Amorphous content on the photocatalytic performance of micrometer-sized tungsten trioxide particles. Arabian Journal of Chemistry, 13, 2912-2924(2020).

    [3] X HE, Y WANG X, N SUN B et al. Synthesis of three- dimensional hierarchical furball-like tungsten trioxide microspheres for high performance supercapacitor electrodes. RSC Advances, 10, 13437-13441(2020).

    [4] J HAI G, F HUANG J, Y CAO L et al. Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. Journal of Alloys and Compounds, 690, 239-248(2017).

    [5] F LIU X, H ZHOU, Z PEI S et al. Oxygen-deficient WO3-x nanoplate array film photoanode for efficient photoelectrocatalytic water decontamination. Chemical Engineering Journal, 381, 122740(2020).

    [7] Q QUAN H, F GAO Y, Z WANG W. Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorganic Chemistry Frontiers, 7, 817-838(2020).

    [8] K PERSSON. Materials project. https://materialsproject.org/

    [9] K DEB S. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Solar Energy Materials and Solar Cells, 92, 245-258(2008).

    [10] Y DING, S YANG I, Q LI Z et al. Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science, 109, 100620(2020).

    [11] Y DONG P, H HOU G, U XI X et al. WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environmental Science-Nano, 4, 539-557(2017).

    [12] F HAN L, L CHEN J, H ZHANG Y et al. Facile synthesis of hierarchical carpet-like WO3 microflowers for high NO2 gas sensing performance. Materials Letters, 210, 8-11(2018).

    [13] S LI Y, L TANG Z, Y ZHANG J et al. Fabrication of vertical orthorhombic/hexagonal tungsten oxide phase junction with high photocatalytic performance. Applied Catalysis B-Environmental, 207, 207-217(2017).

    [14] M HUNGE Y, A YADAV A, A MAHADIK M et al. A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. Journal of the Taiwan Institute of Chemical Engineers, 85, 273-281(2018).

    [15] M KARADENIZ S, D TATAR, M ERTUGRUL et al. Structural, optical and electrochromic properties of WO3 thin films prepared by chemical spray pyrolysis versus spin coating technique. Spectroscopy and Spectral Analysis, 38, 2982-2988(2018).

    [16] I INAMDAR A, S CHAVAN H, A AHMED A et al. Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries. Materials Letters, 215, 233-237(2018).

    [17] P SHENG J, L ZHANG, L DENG et al. Fabrication of dopamine enveloped WO3-x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer. Chemical Engineering Journal, 383, 123071(2020).

    [18] Y ZHAO L, L XI X, S LIU Y et al. Growth mechanism and visible-light-driven photocatalysis of organic solvent dependent WO3 and nonstoichiometric WO3-x nanostructures. Journal of the Taiwan Institute of Chemical Engineers, 115, 339-347(2020).

    [19] Y ZHAO L, L XI X, S LIU Y et al. Facile synthesis of WO3 micro/nanostructures by paper-assisted calcination for visible- light-driven photocatalysis. Chemical Physics, 528, 110515(2020).

    [20] S FAN Y, L XI X, S LIU Y et al. Growth mechanism of immobilized WO3 nanostructures in different solvents and their visible-light photocatalytic performance. Journal of Physics and Chemistry of Solids, 140, 109380(2020).

    [21] K MANTHIRAM, P ALIVISATOS A. Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. Journal of the American Chemical Society, 134, 3995-3998(2012).

    [22] Y KIMURA, K IBANO, K UEHATA et al. Improved hydrogen gas sensing performance of WO3 films with fibrous nanostructured surface. Applied Surface Science, 532, 147274(2020).

    [23] D LI, Q HUANG W, Z XIE et al. Mechanism of enhanced photocatalytic activities on tungsten trioxide doped with sulfur: dopant-type effects. Modern Physics Letters B, 30, 1650340(2016).

    [24] X QIN Y, M LIU, H YE Z. A DFT study on WO3 nanowires with different orientations for NO2 sensing application. Journal of Molecular Structure, 1076, 546-553(2014).

    [25] J CHEN Z, X CAO J, W YANG L et al. The unique photocatalysis properties of a 2D vertical MoO2 /WO2 heterostructure: a first- principles study. Journal of Physics D-Applied Physics, 51, 265106(2018).

    [27] Q JIA Q, M JI H, X BAI. Selective sensing property of triclinic WO3 nanosheets towards ultra-low concentration of acetone. Journal of Materials Science-Materials in Electronics, 30, 7824-7833(2019).

    [28] L MA Y, B FENG, Y LANG J et al. Synthesis of semimetallic tungsten trioxide for infrared light photoelectrocatalytic water splitting. Journal of Physical Chemistry C, 123, 25833-25843(2019).

    [30] M DIRAC P A. The Principles of Quantum Mechanics, 1-22(1958).

    [32] M BORN, K HUANG. Dynamical Theory of Crystal Lattices, 104-113(1958).

    [33] C SLATER J. Magnetic effects and the Hartree-Fock equation. Physical Review, 82, 538-541(1951).

    [36] W KOCH, C HOLTHAUSEN M. A chemist's guide to density functional theory. Zeitschrift für Physik B Condensed Matter, 78, 317-323(2001).

    [37] W KOHN, J SHAM L. Self-consistent equations including exchange and correlation effects. Physical Review, 140, 1133-1138(1965).

    [38] H THOMAS. The calculation of atomic fields. Proceedings of the Cambridge Philosophical Society, 23, 542-548(1927).

    [39] W KOHN. Nobel lecture: electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics, 71, 1253-1266(1999).

    [40] E FERMI. Un metodo statistico per la determinazione di alcune Priorieta dell atome. Rend. Accad. Naz. Lincei, 6, 602(1927).

    [41] M DIRAC P A. Note on exchange phenomena in the thomas-fermi atom. Proceedings of the Cambridge Philosophical Royal Society, 26, 376(1930).

    [42] C SLATER J. A simplification of the hartree-fock method. Self-Consistent Fields in Atoms, 81, 215-230(1975).

    [43] P PERDEW J, A CHEVARY J, H VOSKO S et al. Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46, 6671-6687(1992).

    [45] D VANDERBILT. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895(1990).

    [46] E BLÖCHL P. Projector augmented-wave method. Physical Review B Condens Matter, 50, 17953-17959(1994).

    [47] R HAMANN D, M SCHLÜTER, C CHIANG. Norm-conserving pseudopotentials. Physical Review Letters, 43, 1494-1497(1979).

    [50] V WEB. Psi-k-Ab initio(2021). http://psi-k.net/software/

    [51] W KAMINSKY. WinXMorph(2021). http://cad4.cpac.washington.edu/WinXMorphHome/WinXMorph.htm#opennewwindow

    [52] K MOMMA. Visualization for electronic and structural analysis(2021). http://www.jp-minerals.org/vesta/en/

    [53] S MAHAJAN, S JAGTAP. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review. Applied Materials Today, 18, 100483(2020).

    [54] S ZEB, J PENG X, Z YUAN G et al. Controllable synthesis of ultrathin WO3 nanotubes and nanowires with excellent gas sensing performance. Sensors and Actuators B-Chemical, 305, 127435(2020).

    [55] D LIU, W REN X, S LI Y et al. Nanowires-assembled WO3 nanomesh for fast detection of ppb-level NO2 at low temperature. Journal of Advanced Ceramics, 9, 17-26(2020).

    [56] V OISON, L SAADI, C LAMBERT-MAURIAT et al. Mechanism of CO and O3 sensing on WO3 surfaces: first principle study. Sensors and Actuators B-Chemical, 160, 505-510(2011).

    [57] H ZHAO L, H TIAN F, B WANG X et al. Mechanism of CO adsorption on hexagonal WO3(001) surface for gas sensing: a DFT study. Computational Materials Science, 79, 691-697(2013).

    [58] H JIN, H ZHOU, F ZHANG Y. Insight into the mechanism of CO oxidation on WO3(001) surfaces for gas sensing: a DFT study. Sensors, 17, 1898(2017).

    [59] L TANG B, H JIANG G, X CHEN W et al. First-principles study on hexagonal WO3 for HCHO gas sensing application. Acta Metallurgica Sinica-English Letters, 28, 772-780(2015).

    [60] X HAN, H YIN X. Density functional theory study of the NO2-sensing mechanism on a WO3(001) surface: the role of surface oxygen vacancies in the formation of NO and NO3. Molecular Physics, 114, 3546-3555(2016).

    [61] X QIN Y, M LIU, Y HUA D. First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire. Acta Physica Sinica, 63, 207101(2014).

    [62] X QIN Y, H YE Z. DFT study on interaction of NO2 with the vacancy-defected WO3 nanowires for gas-sensing. Sensors and Actuators B-Chemical, 222, 499-507(2016).

    [63] L BAI S, W ZHANG K, S WANG L et al. Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres. Journal of Materials Chemistry A, 2, 7927-7934(2014).

    [64] N YAKOVKIN I, M GUTOWSKI. Driving force for the WO3(001) surface relaxation. Surface Science, 601, 1481-1488(2007).

    [66] H YANG H, G SUN H, T LI Q et al. Structural, electronic, optical and lattice dynamic properties of the different WO3 phases: first-principle calculation. Vacuum, 164, 411-420(2019).

    [68] T ZHENG T, W SANG, H HE Z et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Letters, 17, 7968-7973(2017).

    [70] G WANG F, C DI VALENTIN, G PACCHIONI. Doping of WO3 for photocatalytic water splitting: hints from density functional theory. Journal of Physical Chemistry C, 116, 8901-8909(2012).

    [71] T ZHANG, L ZHU Z, N CHEN H et al. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale, 7, 2933-2940(2015).

    [72] C HUANG W, X WANG J, L BIAN et al. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction. Physical Chemistry Chemical Physics, 20, 17268-17278(2018).

    [73] N ZHANG, Y LI X, F LIU Y et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: synergistic catalysis by oxygen vacancies and bronsted acid sites. Small, 13, 1701354(2017).

    [74] N ZHANG, A JALIL, X WU D et al. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. Journal of the American Chemical Society, 140, 9434-9443(2018).

    [75] N ZHANG, R LONG, C GAO et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Science China-Materials, 61, 771-805(2018).

    [76] Q LI M, N ZHANG, R LONG et al. PdPt alloy nanocatalysts supported on TiO2: maneuvering metal-hydrogen interactions for light-driven and water-donating selective alkyne semihydrogenation. Small, 13, 1604173(2017).

    [77] Z WANG, Y WANG X, S CONG et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science & Engineering R-Reports, 140, 100524(2020).

    [78] J YAO Y, Q ZHAO, W WEI et al. WO3 quantum-dots electrochromism. Nano Energy, 68, 104350(2020).

    [79] H LIN, F ZHOU, P LIU C et al. Non-grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations. Journal of Materials Chemistry A, 2, 12280-12288(2014).

    [80] A HJELM, G GRANQVIST C, M WILLS J. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Physical Review B, 54, 2436-2445(1996).

    [81] J WISEMAN P, G DICKENS P. Neutron-diffraction studies of cubic tungsten bronzes. Journal of Solid State Chemistry, 17, 91-100(1976).

    [82] S YANG, J CHA, C KIM J et al. Monolithic interface contact engineering to boost optoelectronic performances of 2D semiconductor photovoltaic heterojunctions. Nano Letters, 20, 2443-2451(2020).

    [85] P KOCER C, J GRIFFITH K, P GREY C et al. Cation disorder and lithium insertion mechanism of Wadsley-Roth crystallographic shear phases from first principles. Journal of the American Chemical Society, 141, 15121-15134(2019).

    [86] A KARIM N, K KAMARUDIN S, K SHYUAN L et al. Study on the electronic properties and molecule adsorption of W18O49 nanowires as a catalyst support in the cathodes of direct methanol fuel cells. Journal of Power Sources, 288, 461-472(2015).

    [87] F ZHANG Z, L CHEN J, B LI H et al. Vapor-solid nanotube growth via sidewall epitaxy in an environmental transmission electron microscope. Crystal Growth & Design, 17, 11-15(2017).

    [88] F ZHANG Z, Y WANG, B LI H et al. Atomic-scale observation of vapor-solid nanowire growth via oscillatory mass transport. ACS Nano, 10, 763-769(2016).

    [89] F ZHANG Z, P SHENG L, L CHEN et al. Atomic-scale observation of pressure-dependent reduction dynamics of W18O49 nanowires using environmental TEM. Physical Chemistry Chemical Physics, 19, 16307-16311(2017).

    [90] L CHEN, S LAM, H ZENG Q et al. Effect of cation intercalation on the growth of hexagonal WO3 nanorods. Journal of Physical Chemistry C, 116, 11722-11727(2012).

    [91] S JIANG, M CHEKINI, B QU Z et al. Chiral ceramic nanoparticles and peptide catalysis. Journal of the American Chemical Society, 139, 13701-13712(2017).

    [92] J GU L, L MA C, H ZHANG X et al. Populating surface-trapped electrons towards SERS enhancement of W18O49 nanowires. Chemical Communications, 54, 6332-6335(2018).

    [93] F MEHMOOD, R PACHTER, R MURPHY N et al. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations. Journal of Applied Physics, 120, 233105(2016).

    [94] B MIGAS D, L SHAPOSHNIKOV V, N RODIN V et al. Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. Journal of Applied Physics, 108, 093713(2010).

    [95] W SAI L, L TANG L, M HUANG X et al. Lowest-energy structures of (WO3)n(2≤n≤12) clusters from first-principles global search. Chemical Physics Letters, 544, 7-12(2012).

    [96] X HUANG, J ZHAI H, J LI et al. On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3On (n=7-10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. Journal of Physical Chemistry A, 110, 85-92(2006).

    [98] G JIANG P, Y XIAO Y, J LIU W et al. Hydrogen reduction characteristics of WO3 based on density functional theory. Results in Physics, 12, 896-902(2019).

    [99] J LIU W, G JIANG P, Y XIAO Y et al. A study of the hydrogen adsorption mechanism of W18O49 using first-principles calculations. Computational Materials Science, 154, 53-59(2018).

    Linyan ZHAO, Yangsi LIU, Xiaoli XI, Liwen MA, Zuoren NIE. First-principles Study on Nanoscale Tungsten Oxide: a Review[J]. Journal of Inorganic Materials, 2021, 36(11): 1125
    Download Citation