• Infrared and Laser Engineering
  • Vol. 50, Issue 4, 20200297 (2021)
Guoqing Zhou1、2, Haocheng Hu1、3, Jiasheng Xu1、4, Xiang Zhou1、2、3, and Xueqin Nong5
Author Affiliations
  • 1Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin University of Technology, Guilin 541006, China
  • 2School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 3College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541006, China
  • 4College of Earth Sciences, Guilin University of Technology, Guilin 541006, China
  • 534 Research Institute of China Electronics Technology Group Corporation, Guilin 541004, China
  • show less
    DOI: 10.3788/IRLA20200297 Cite this Article
    Guoqing Zhou, Haocheng Hu, Jiasheng Xu, Xiang Zhou, Xueqin Nong. Design of LiDAR optical machine system for airborne single frequency bathymetry[J]. Infrared and Laser Engineering, 2021, 50(4): 20200297 Copy Citation Text show less
    Single frequency LiDAR sounding principle
    Fig. 1. Single frequency LiDAR sounding principle
    System structure of LiDAR. a-Integrated control unit; b-Power supply; c-532 nm laser; d-Motor driver; e-24V DC servo motor; f-Reflective wedge; g-Optical emission channel; h-Optical receiving channel; i-APD and its processing circuit; j-PMT and its processing circuit; k-Area array multispectral high resolution CCD camera; l-POS system
    Fig. 2. System structure of LiDAR. a-Integrated control unit; b-Power supply; c-532 nm laser; d-Motor driver; e-24V DC servo motor; f-Reflective wedge; g-Optical emission channel; h-Optical receiving channel; i-APD and its processing circuit; j-PMT and its processing circuit; k-Area array multispectral high resolution CCD camera; l-POS system
    Zemax simulation reflection type wedge scanning unit
    Fig. 3. Zemax simulation reflection type wedge scanning unit
    Field loss factors corresponding to different water depths and receiving field of view
    Fig. 4. Field loss factors corresponding to different water depths and receiving field of view
    Recognition factors for different water depths changing with field of view
    Fig. 5. Recognition factors for different water depths changing with field of view
    Recognition factor of 50 m water depth changing with field of view
    Fig. 6. Recognition factor of 50 m water depth changing with field of view
    Structure of Kirk three-piece objective lens set
    Fig. 7. Structure of Kirk three-piece objective lens set
    Optical path of objective lens group
    Fig. 8. Optical path of objective lens group
    MTF curve of objective lens group
    Fig. 9. MTF curve of objective lens group
    Improved Kenneth eyepiece structure
    Fig. 10. Improved Kenneth eyepiece structure
    Structure of PMT eyepiece group optical path
    Fig. 11. Structure of PMT eyepiece group optical path
    Structure of APD eyepiece group optical path
    Fig. 12. Structure of APD eyepiece group optical path
    Optical path of LiDAR overall receiving telescope system
    Fig. 13. Optical path of LiDAR overall receiving telescope system
    Distribution of diffuse spots in each field of view
    Fig. 14. Distribution of diffuse spots in each field of view
    Optical-mechanical system of LiDAR
    Fig. 15. Optical-mechanical system of LiDAR
    DC motor speed regulation circuit
    Fig. 16. DC motor speed regulation circuit
    Schematic diagram of receiving and transmitting light system
    Fig. 17. Schematic diagram of receiving and transmitting light system
    Grid scanning pattern
    Fig. 18. Grid scanning pattern
    Lissajous scanning pattern
    Fig. 19. Lissajous scanning pattern
    Lissajous optimal scan
    Fig. 20. Lissajous optimal scan
    Measured waveform data
    Fig. 21. Measured waveform data
    PartsParameterValue
    LaserWavelength532 nm
    Peak power100 kW
    Pulse width3 ns
    Repetition frequency1 kHz
    Divergence angle0.2 mrad
    Scanning unitWedge angle
    Wedge diameter40 mm
    Wedge thickness15 mm
    Angle between the bottom of wedge and vertical axis45º
    Motor speed540, 600 r/min
    Rated voltage of motor24 V
    Rated power of motor100 W
    Receiving Optical unitReceiving field angle95 mrad
    Entrance pupil diameter82 mm
    Exit pupil diameter8 mm
    Magnification10.25× and 42×
    Bandwidth±1 nm
    Overall systemWeight25 kg
    Volume1050 mm×400 mm× 460 mm
    Mode of deliveryUAV
    Flight speed0-10 m/s
    Flight height150 m
    Run time20 min
    Scanning width52.9 m
    Scanning point density1/m2
    Best measuring depth25 m
    Maximum measuring depth50 m
    Table 1. [in Chinese]
    ParametersParameters nameParameters valuesCalculation formula(Parameters see column 1)
    θrEquivalent receiving FOVθr=θr0cosθa/(ncosθw)
    HEquivalent flight height205.781 4 m H0=150 m H=H0n(cosθw/cosθa)3
    hWater depth measurement25 m
    mScattering angle mean cosine function8
    bfForward scattering coefficient0.4
    θwAngle between laser direction and vertical direction6.74°θa=10° sinθa=nsinθw
    rrEquivalent radius82.689 m m rr0=82 mm rr=rr0cosθw/cosθa
    rlEquivalent radius of laser beam cross section3.054 m m rl0=3 mm rl=rl0cosθw/cosθa
    θlEquivalent laser divergence angle0.1492 m rad θl0=0.2 mrad θl=θl0cosθa/(ncosθw)
    nRefractive1.333
    Table 2. [in Chinese]
    Value of qccoefficient Visibility range/km
    1.6V>50
    1.310<V<50
    0.16 V+0.340.5<V<10
    0V<0.5
    Table 3. [in Chinese]
    LensRadius of curvature/mmFocal length/mmMaterialRefractive index (532 nm)DistanceSurface/mm
    1198.543213.098ZF141.931712air→ZF14
    2600.383644.395ZF141.9317111.411ZF14→air
    3−353.382−564.779F2HT1.625710air→F2HT
    4156.494250.110F2HT1.625736.799F2HT→air
    5513.419551.056ZF141.931712air→ZF14
    6−481.289516.571ZF141.9317307.790ZF14→air
    Table 4. [in Chinese]
    LensRadius of curvature/mmFocal length/mmMaterial/refractive (532 nm)Distance to next side/mmSurface
    7$\infty $$\infty $SF66/1.937 58air→SF66
    8−135.530144.565SF66/1.937 519.907SF66→air
    948.61751.858SF66/1.937 57.990air→SF66
    1092.216−98.364SF66/1.937 516.1SF66→air
    1163.20076.190LASF14A/1.829 510air→LASF14A
    12−316.269−2 928.417LASF14A/1.829 57.6LASF14A→SF66
    13143.183−152.728SF66/1.937 517.172SF66→air
    Table 5. [in Chinese]
    LensRadius of curvature/mmFocal length/mmMaterial / refractive (532 nm)Distance to next side/mmSurface
    7$\infty $$\infty $SF66/1.937 54air→SF66
    841.854−44.644SF66/1.937 530.426SF66→air
    952.44355.939SF66/1.937 54.5air→SF66
    10−47.17350.318SF66/1.937 51SF66→air
    1115.27618.416LASF14A/1.829 57.5air→LASF14A
    12−22.175−205.324LASF14A/1.829 54LASF14A→SF66
    1319.558−20.862SF66/1.937 510.053SF66→air
    Table 6. [in Chinese]
    LensOptical transmittanceSurface
    Objective 189.9%air→ZF14
    Objective 289.9%ZF14→air
    Objective 394.32%air→F2HT
    Objective 494.32%F2HT→air
    Objective 589.9%air→ZF14
    Objective 689.9%ZF14→air
    Eyepiece 789.8%air→SF66
    Eyepiece 889.8%SF66→air
    Eyepiece 989.8%air→SF66
    Eyepiece 1089.8%SF66→air
    Eyepiece 1191.41%air→LASF14A
    Eyepiece 1299.9%LASF14A→SF66
    Eyepiece 1389.8%SF66→air
    Table 7. [in Chinese]
    ComponentWeight/kg
    Power source5
    532 nm laser3
    80 flange servo motor0.75
    Motor driver0.75
    Optical pipeline2.1(7 series aluminum)
    APD or PMT and its circuit0.5
    IMU2.6
    Integrated control system3.5
    CCD camera0.35
    Other0.95
    Outsourcing network5 (PVC)
    Total25
    Table 8. [in Chinese]
    ComponentVolume/mm3
    Power source188×156×97.5
    532 nm laser104×104×166.5
    80 flange servo motor100×60×70
    Motor driver150×100×40
    Optical pipeline80(inside diameter)×660
    IMU200×116×80
    Integrated control system180×120×100
    Outsourcing network1 050×460×400
    Table 9. [in Chinese]
    PlanOrder numberFlight speed/m·s−1Flight height/mScanning point density/m−2Scanning width/mDistance/mArea/m2
    1a61002.4235.26361 269.36
    b81002.0735.26481 692.48
    c101001.8135.26602 137.20
    2a61501.2952.89361 904.04‬
    b81501.1452.89482 538.72
    c101501.0252.89603 173.40
    3a62000.8170.53362 539.08
    b82000.7370.53483 385.44
    c102000.6670.53604231.80
    Table 10. [in Chinese]
    Guoqing Zhou, Haocheng Hu, Jiasheng Xu, Xiang Zhou, Xueqin Nong. Design of LiDAR optical machine system for airborne single frequency bathymetry[J]. Infrared and Laser Engineering, 2021, 50(4): 20200297
    Download Citation