[1] Thomas H, Qi C R, Deschaud J E, et al. KPConv: Flexible defmable convolution f point clouds[C]2019 IEEECVF International Conference on Computer Vision (ICCV), IEEE, 2020.
[2] K Tan, X Cheng. Specular reflection effects elimination in terrestrial laser scanning intensity data using Phong model. Remote Sensing, 9, 853(2017).
[3] Y Chen, E Räikkönen, S Kaasalainen, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source. Sensors, 10, 7057-7066(2010).
[4] M Milenković, N Pfeifer, P Glira. Applying terrestrial laser scanning for soil surface roughness assessment. Remote Sensing, 7, 2007-2045(2015).
[5] T Xu, L Xu, X Li, et al. Detection of water leakage in underground tunnels using corrected intensity data and 3D point cloud of terrestrial laser scanning. IEEE Access, 6, 32471-32480(2018).
[6] X Li, J Zeng, H Wang, . Design and real-time imaging technology of three-dimensional scanning LiDAR. Infrared and Laser Engineering, 48, 0503004(2019).
[7] Y Zhang, W Huang, C Dong, . Research on the development of the detection satellite technology in oceanographic lidar. Infrared and Laser Engineering, 49, 20201045(2020).
[8] H Guan, J Li, Y Yu, et al. Using mobile laser scanning data for automated extraction of road markings. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 93-107(2014).
[9] D Burton, D B Dunlap, L J Wood, et al. Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81, 339-347(2011).
[10] M J Olsen, F Kuester, B J Chang, et al. Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering, 24, 264-272(2010).
[11] K Bi, S Gao, Z Niu, et al. Estimating leaf chlorophyll and nitrogen contents using active hyperspectral LiDAR and partial least square regression method. Journal of Applied Remote Sensing, 13, 034513(2019).
[12] S Du, X Li, Z Liu, . Radiometric characteristics of the intensity data of laser scanner. Journal of University of Chinese Academy of Sciences, 36, 392-400(2019).
[13] W Tian, L Tang, Y Chen, et al. Analysis and radiometric calibration for backscatter intensity of hyperspectral LiDAR caused by incident angle effect. Sensors, 21, 2960(2021).
[14] A Vain, S Kaasalainen, U Pyysalo, et al. Use of naturally available reference targets to calibrate airborne laser scanning intensity data. Sensors, 9, 2780-2796(2009).
[15] P Hu, H Huang, Y Chen, et al. Analyzing the angle effect of leaf reflectance measured by indoor hyperspectral light detection and ranging (LiDAR). Remote Sensing, 12, 919(2020).
[16] W Wagner. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 505-513(2010).
[17] en M, Nayar S K. Generalization of Lambert''s reflectance model[C]Proceedings of the 21st Annual Conference on Computer Graphics Interactive Techniques, 1994: 239246.
[18] Li W. An acoustooptic tunable filter based hyperspectral LiDAR system its application [D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)
[19] W Li, C Jiang, Y Chen, et al. A liquid crystal tunable filter-based hyperspectral LiDAR system and its application on vegetation red edge detection. IEEE Geoscience and Remote Sensing Letters, 16, 291-295(2018).
[20] Y Chen, W Li, J Hyyppä, et al. A 10-nm spectral resolution hyperspectral LiDAR system based on an acousto-optic tunable filter. Sensors, 19, 1620(2019).