• Infrared and Laser Engineering
  • Vol. 52, Issue 10, 20230108 (2023)
Wenxin Tian1,2, Yuwei Chen3,4, Lingli Tang1, Ziyang Li1..., Shi Qiu1, Haohao Wu1, Huijing Zhang1,2, Linsheng Chen1, Changhui Jiang3, Peilun Hu3,5, Jianxin Jia3, Haibin Sun3, Yicheng Wang4 and Yihua Hu4|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • 2School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Finnish Geospatial Research Institute, Masala FI-02430, Finland
  • 4Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
  • 5University of Helsinki, Helsinki 00014, Finland
  • show less
    DOI: 10.3788/IRLA20230108 Cite this Article
    Wenxin Tian, Yuwei Chen, Lingli Tang, Ziyang Li, Shi Qiu, Haohao Wu, Huijing Zhang, Linsheng Chen, Changhui Jiang, Peilun Hu, Jianxin Jia, Haibin Sun, Yicheng Wang, Yihua Hu. Bidirectional reflectance distribution function model of rough surface based on backscatter intensity of hyperspectral LiDAR[J]. Infrared and Laser Engineering, 2023, 52(10): 20230108 Copy Citation Text show less
    References

    [1] Thomas H, Qi C R, Deschaud J E, et al. KPConv: Flexible defmable convolution f point clouds[C]2019 IEEECVF International Conference on Computer Vision (ICCV), IEEE, 2020.

    [2] K Tan, X Cheng. Specular reflection effects elimination in terrestrial laser scanning intensity data using Phong model. Remote Sensing, 9, 853(2017).

    [3] Y Chen, E Räikkönen, S Kaasalainen, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source. Sensors, 10, 7057-7066(2010).

    [4] M Milenković, N Pfeifer, P Glira. Applying terrestrial laser scanning for soil surface roughness assessment. Remote Sensing, 7, 2007-2045(2015).

    [5] T Xu, L Xu, X Li, et al. Detection of water leakage in underground tunnels using corrected intensity data and 3D point cloud of terrestrial laser scanning. IEEE Access, 6, 32471-32480(2018).

    [6] X Li, J Zeng, H Wang, . Design and real-time imaging technology of three-dimensional scanning LiDAR. Infrared and Laser Engineering, 48, 0503004(2019).

    [7] Y Zhang, W Huang, C Dong, . Research on the development of the detection satellite technology in oceanographic lidar. Infrared and Laser Engineering, 49, 20201045(2020).

    [8] H Guan, J Li, Y Yu, et al. Using mobile laser scanning data for automated extraction of road markings. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 93-107(2014).

    [9] D Burton, D B Dunlap, L J Wood, et al. Lidar intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81, 339-347(2011).

    [10] M J Olsen, F Kuester, B J Chang, et al. Terrestrial laser scanning-based structural damage assessment. Journal of Computing in Civil Engineering, 24, 264-272(2010).

    [11] K Bi, S Gao, Z Niu, et al. Estimating leaf chlorophyll and nitrogen contents using active hyperspectral LiDAR and partial least square regression method. Journal of Applied Remote Sensing, 13, 034513(2019).

    [12] S Du, X Li, Z Liu, . Radiometric characteristics of the intensity data of laser scanner. Journal of University of Chinese Academy of Sciences, 36, 392-400(2019).

    [13] W Tian, L Tang, Y Chen, et al. Analysis and radiometric calibration for backscatter intensity of hyperspectral LiDAR caused by incident angle effect. Sensors, 21, 2960(2021).

    [14] A Vain, S Kaasalainen, U Pyysalo, et al. Use of naturally available reference targets to calibrate airborne laser scanning intensity data. Sensors, 9, 2780-2796(2009).

    [15] P Hu, H Huang, Y Chen, et al. Analyzing the angle effect of leaf reflectance measured by indoor hyperspectral light detection and ranging (LiDAR). Remote Sensing, 12, 919(2020).

    [16] W Wagner. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 505-513(2010).

    [17] en M, Nayar S K. Generalization of Lambert''s reflectance model[C]Proceedings of the 21st Annual Conference on Computer Graphics Interactive Techniques, 1994: 239246.

    [18] Li W. An acoustooptic tunable filter based hyperspectral LiDAR system its application [D]. Beijing: University of Chinese Academy of Sciences, 2018. (in Chinese)

    [19] W Li, C Jiang, Y Chen, et al. A liquid crystal tunable filter-based hyperspectral LiDAR system and its application on vegetation red edge detection. IEEE Geoscience and Remote Sensing Letters, 16, 291-295(2018).

    [20] Y Chen, W Li, J Hyyppä, et al. A 10-nm spectral resolution hyperspectral LiDAR system based on an acousto-optic tunable filter. Sensors, 19, 1620(2019).

    CLP Journals

    [1] Ronghua LI, Xinchen ZHOU, Chuanxin WENG, Haopeng XUE, Jinlong WU, Chenyu LIN. Non-contact infrared laser physical property inversion method for target surface based on SSA-GRNN[J]. Infrared and Laser Engineering, 2024, 53(10): 20240217

    Wenxin Tian, Yuwei Chen, Lingli Tang, Ziyang Li, Shi Qiu, Haohao Wu, Huijing Zhang, Linsheng Chen, Changhui Jiang, Peilun Hu, Jianxin Jia, Haibin Sun, Yicheng Wang, Yihua Hu. Bidirectional reflectance distribution function model of rough surface based on backscatter intensity of hyperspectral LiDAR[J]. Infrared and Laser Engineering, 2023, 52(10): 20230108
    Download Citation