• High Power Laser and Particle Beams
  • Vol. 34, Issue 6, 069001 (2022)
Lichen Rui1, Zining Pang1, Xuanhe Li1, Jian Shen2, Qing Li3, and Liangliang Lin1、3、*
Author Affiliations
  • 1School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
  • 2School of Material and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
  • 3Jiangsu Xinri Electric Vehicle Co. Ltd., Wuxi 214106, China
  • show less
    DOI: 10.11884/HPLPB202234.210404 Cite this Article
    Lichen Rui, Zining Pang, Xuanhe Li, Jian Shen, Qing Li, Liangliang Lin. Liquid plasmas and their applications in nanomaterial synthesis[J]. High Power Laser and Particle Beams, 2022, 34(6): 069001 Copy Citation Text show less
    References

    [1] Ren Qiaoli, Ga Lu, Lu Zhili, et al. Aptamer-functionalized nanomaterials for biological applications[J]. Materials Chemistry Frontiers, 4, 1569-1585(2020).

    [2] Shivashankar S A. Chemical synthesis of nanomaterials structures, including nanostructured thin films, f different applications[M]Vinoy K J, Ananthasuresh G K, Pratap R, et al. Micro Smart Devices Systems. New Delhi: Springer, 2014: 249263.

    [3] Kulkarni S K. Synthesis of nanomaterials—I (physical methods)[M]Kulkarni S K. Nanotechnology: Principles Practices. Cham: Springer, 2015: 5576.

    [4] Lin Liangliang, Starostin S A, Li Sirui, et al. Synthesis of metallic nanoparticles by microplasma[J]. Physical Sciences Reviews, 3, 20170121(2018).

    [5] Lin Liangliang, Wang Qi. Microplasma: a new generation of technology for functional nanomaterial synthesis[J]. Plasma Chemistry and Plasma Processing, 35, 925-962(2015).

    [7] Tichonovas M, Krugly E, Racys V, et al. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment[J]. Chemical Engineering Journal, 229, 9-19(2013).

    [9] Toth J R, Abuyazid N H, Lacks D J, et al. A plasma-water droplet reactor for process-intensified, continuous nitrogen fixation at atmospheric pressure[J]. ACS Sustainable Chemistry & Engineering, 8, 14845-14854(2020).

    [10] Bruggeman P J, Kushner M J, Locke B R, et al. Plasma–liquid interactions: a review and roadmap[J]. Plasma Sources Science and Technology, 25, 053002(2016).

    [12] Rabani J, Mulac W A, Matheson M S. The pulse radiolysis of aqueous tetranitromethane. I. Rate constants and the extinction coefficient of eaq. II. Oxygenated solutions[J]. The Journal of Physical Chemistry, 69, 53-70(1965).

    [13] Hare P M, Price E A, Stanisky C M, et al. Solvated electron extinction coefficient and oscillator strength in high temperature water[J]. The Journal of Physical Chemistry A, 114, 1766-1775(2010).

    [14] Hart E J, Anbar M. The hydrated electron[M]. New Yk, 1970.

    [15] Chen Qiang, Kaneko T, Hatakeyama R. Reductants in gold nanoparticle synthesis using gas–liquid interfacial discharge plasmas[J]. Applied Physics Express, 5, 086201(2012).

    [16] Locke B R, Shih K Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water[J]. Plasma Sources Science and Technology, 20, 034006(2011).

    [17] Eisenberg G. Colorimetric determination of hydrogen peroxide[J]. Industrial and Engineering Chemistry, Analytical Edition, 15, 327-328(1943).

    [18] Winter J, Wende K, Masur K, et al. Feed gas humidity: a vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells[J]. Journal of Physics D:Applied Physics, 46, 295401(2013).

    [19] Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 18, 1-21(1989).

    [20] Gorbanev Y, O'Connell D, Chechik V. Non-thermal plasma in contact with water: the origin of species[J]. Chemistry - A European Journal, 22, 3496-3505(2016).

    [21] Gorbanev Y, Verlackt C C W, Tinck S, et al. Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet[J]. Physical Chemistry Chemical Physics, 20, 2797-2808(2018).

    [22] Schwarz H A. Free radicals generated by radiolysis of aqueous solutions[J]. Journal of Chemical Education, 58, 101(1981).

    [23] Tresp H, Hammer M U, Winter J, et al. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy[J]. Journal of Physics D:Applied Physics, 46, 435401(2013).

    [24] Sahni M, Locke B R. Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors[J]. Industrial & Engineering Chemistry Research, 45, 5819-5825(2006).

    [25] Satoh A Y, Trosko J E, Masten S J. Methylene blue dye test for rapid qualitative detection of hydroxyl radicals formed in a Fenton’s reaction aqueous solution[J]. Environmental Science & Technology, 41, 2881-2887(2007).

    [26] Chen Qiang, Li Junshuai, Li Yongfeng. A review of plasma–liquid interactions for nanomaterial synthesis[J]. Journal of Physics D: Applied Physics, 48, 424005(2015).

    [27] Tani A, Fukui S, Ikawa S, et al. Diagnosis of superoxide anion radical induced in liquids by atmospheric-pressure plasma using superoxide dismutase[J]. Japanese Journal of Applied Physics, 54, 01AF01(2015).

    [28] Tang Bo, Zhang Li, Geng Yue. Determination of the antioxidant capacity of different food natural products with a new developed flow injection spectrofluorimetry detecting hydroxyl radicals[J]. Talanta, 65, 769-775(2005).

    [29] Graham W G, Stalder K R. Plasmas in liquids and some of their applications in nanoscience[J]. Journal of Physics D: Applied Physics, 44, 174037(2011).

    [30] Pavlovich M J, Chang H W, Sakiyama Y, et al. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water[J]. Journal of Physics D: Applied Physics, 46, 145202(2013).

    [31] GarneR A L, St Croix C M, Pitt B R, et al. Specific fluorogenic probes for ozone in biological and atmospheric samples[J]. Nature Chemistry, 1, 316-321(2009).

    [32] Bard A J, Faulkner L R. Electrochemical methods: fundamentals applications[M]. New Yk: John Wiley & Sons, 1980: 410.

    [33] Zhang Qian, Sun Peng, Feng Hongqing, et al. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet[J]. Journal of Applied Physics, 111, 123305(2012).

    [34] Efrati S, Dishy V, Averbukh M, et al. The effect of N-acetylcysteine on renal function, nitric oxide, and oxidative stress after angiography[J]. Kidney International, 64, 2182-2187(2003).

    [35] Shen Jie, Zhang Hao, Xu Zimu, et al. Preferential production of reactive species and bactericidal efficacy of gas-liquid plasma discharge[J]. Chemical Engineering Journal, 362, 402-412(2019).

    [36] Takamatsu T, Kawate A, Uehara K, et al. Bacterial inactivation in liquids using multi-gas plasmas[J]. Plasma Medicine, 2, 237-247(2012).

    [38] Kieber R J, Seaton P J. Determination of subnanomolar concentrations of nitrite in natural waters[J]. Analytical Chemistry, 67, 3261-3264(1995).

    [39] Machala Z, Tarabova B, Hensel K, et al. Formation of ROS and RNS in water electro-sprayed through transient spark discharge in air and their bactericidal effects[J]. Plasma Processes and Polymers, 10, 649-659(2013).

    [40] Oehmigen K, Hähnel M, Brandenburg R, et al. The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids[J]. Plasma Processes and Polymers, 7, 250-257(2010).

    [41] Chauvin J, Judée F, Yousfi M, et al. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet[J]. Scientific Reports, 7, 4562(2017).

    [42] Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects[J]. Free Radical Biology and Medicine, 43, 995-1022(2007).

    [43] Lukes P, Dolezalova E, Sisrova I, et al. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2[J]. Plasma Sources Science and Technology, 23, 015019(2014).

    [44] Zielonka J, Zielonka M, Sikora A, et al. Global profiling of reactive oxygen and nitrogen species in biological systems[J]. Journal of Biological Chemistry, 287, 2984-2995(2012).

    [45] Nakashima Y, Ikawa S, Tani A, et al. Ion-exchange chromatographic analysis of peroxynitric acid[J]. Journal of Chromatography A, 1431, 89-93(2016).

    [46] Davies M J. Singlet oxygen-mediated damage to proteins and its consequences[J]. Biochemical and Biophysical Research Communications, 305, 761-770(2003).

    [47] Ragàs X, Jiménez-Banzo A, Sánchez-García D, et al. Singlet oxygen photosensitisation by the fluorescent probe singlet oxygen sensor green[J]. Chemical Communications, 2920-2922(2009).

    [48] Arjunan K P, Clyne A M. Hydroxyl radical and hydrogen peroxide are primarily responsible for dielectric barrier discharge plasma-induced angiogenesis[J]. Plasma Processes and Polymers, 8, 1154-1164(2011).

    [49] Wu Haiyan, Sun Peng, Feng Hongqing, et al. Reactive oxygen species in a non-thermal plasma microjet and water system: generation, conversion, and contributions to bacteria inactivation—an analysis by electron spin resonance spectroscopy[J]. Plasma Processes and Polymers, 9, 417-424(2012).

    [50] Rumbach P, Bartels D M, Sankaran R M, et al. The solvation of electrons by an atmospheric-pressure plasma[J]. Nature Communications, 6, 7248(2015).

    [51] Kitano K, Aoki H, Hamaguchi S. Radio-frequency-driven atmospheric-pressure plasmas in contact with liquid water[J]. Japanese Journal of Applied Physics, 45, 8294-8297(2006).

    [52] Acayanka E, Tiya Djowe A, Laminsi S, et al. Plasma-assisted synthesis of TiO2 nanorods by gliding arc discharge processing at atmospheric pressure for photocatalytic applications[J]. Plasma Chemistry and Plasma Processing, 33, 725-735(2013).

    [53] Lin Liangliang, Ma Xintong, Li Sirui, et al. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Frontiers of Chemical Science and Engineering, 13, 501-510(2019).

    [54] Shirai N, Uchida S, Tochikubo F. Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric dc glow discharge in contact with liquid[J]. Japanese Journal of Applied Physics, 53, 046202(2014).

    [55] Ashkarran A A, Iraji Zad A, Ahadian M M, et al. Stability, size and optical properties of colloidal silver nanoparticles prepared by electrical arc discharge in water[J]. The European Physical Journal Applied Physics, 48, 10601(2009).

    [56] Toriyabe Y, Watanabe S, Yatsu S, et al. Controlled formation of metallic nanoballs during plasma electrolysis[J]. Applied Physics Letters, 91, 041501(2007).

    [57] Saito G, Hosokai S, Akiyama T, et al. Size-controlled Ni nanoparticles formation by solution glow discharge[J]. Journal of the Physical Society of Japan, 79, 083501(2010).

    [58] Tokushige M, Nishikiori T, Ito Y. Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles[J]. Russian Journal of Electrochemistry, 46, 619-626(2010).

    [59] Lee W J, Park Y K, Kim J S, et al. Preparation and characterization of bimetallic Fe–Ni oxide nanoparticles using liquid phase plasma process[J]. Journal of Nanoscience and Nanotechnology, 19, 2362-2365(2019).

    [60] Yan Tingting, Zhong Xiaoxia, Rider A E, et al. Microplasma-chemical synthesis and tunable real-time plasmonic responses of alloyed AuxAg1−x nanoparticles[J]. Chemical Communications, 50, 3144-3147(2014).

    [61] Saito G, Akiyama T. Nanomaterial synthesis using plasma generation in liquid[J]. Journal of Nanomaterials, 2015, 123696(2015).

    [62] Kaneko T, Baba K, Harada T, et al. Novel gas-liquid interfacial plasmas for synthesis of metal nanoparticles[J]. Plasma Processes and Polymers, 6, 713-718(2009).

    [63] Huang Xunzhi, Li Yongsheng, Zhong Xiaoxia. Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry[J]. Nanoscale Research Letters, 9, 572(2014).

    [64] Brenner M P, Hilgenfeldt S, Lohse D. Single-bubble sonoluminescence[J]. Reviews of Modern Physics, 74, 425-484(2002).

    [65] De Giacomo A, Dell’Aglio M, De Pascale O, et al. From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 62, 721-738(2007).

    [66] Kim H J, Shin J G, Park C S, et al. In-liquid plasma process for size- and shape-controlled synthesis of silver nanoparticles by controlling gas bubbles in water[J]. Materials, 11, 891(2018).

    [67] Mashimo T, Tamura S, Yamamoto K, et al. Synthesis of Pd–Ru solid-solution nanoparticles by pulsed plasma in liquid method[J]. RSC Advances, 10, 13232-13236(2020).

    [68] Ashkarran A A. A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid[J]. Current Applied Physics, 10, 1442-1447(2010).

    [69] Saito G, Azman W O S B W M, Nakasugi Y, et al. Optimization of electrolyte concentration and voltage for effective formation of Sn/SnO2 nanoparticles by electrolysis in liquid[J]. Advanced Powder Technology, 25, 1038-1042(2014).

    [70] Azumi K, Mizuno T, Akimoto T, et al. Light emission from Pt during high-voltage cathodic polarization[J]. Journal of the Electrochemical Society, 146, 3374-3377(1999).

    [71] Mizuno T, Akimoto T, Azumi K, et al. Hydrogen evolution by plasma electrolysis in aqueous solution[J]. Japanese Journal of Applied Physics, 44, 396(2005).

    [72] Kim H G, Lee H, Kim S J, et al. Synthesis of manganese nanoparticles in the liquid phase plasma[J]. Journal of Nanoscience and Nanotechnology, 13, 6103-6108(2013).

    [73] Saito G, Sakaguchi N. Solution plasma synthesis of Si nanoparticles[J]. Nanotechnology, 26, 235602(2015).

    [74] Saito G, Nakasugi Y, Yamashita T, et al. Solution plasma synthesis of bimetallic nanoparticles[J]. Nanotechnology, 25, 135603(2014).

    [75] Saito G, Zhu Chunyu, Akiyama T. Surfactant-assisted synthesis of Sn nanoparticles via solution plasma technique[J]. Advanced Powder Technology, 25, 728-732(2014).

    [76] Hu Xiulan, Takai O, Saito N. Synthesis of gold nanoparticles by solution plasma sputtering in various solvents[J]. Journal of Physics: Conference Series, 417, 012030(2013).

    [77] Hu Xiulan, Cho S P, Takai O, et al. Rapid synthesis and structural characterization of well-defined gold clusters by solution plasma sputtering[J]. Crystal Growth & Design, 12, 119-123(2012).

    [78] Biró L P, Horváth Z E, Szalmás L, et al. Continuous carbon nanotube production in underwater AC electric arc[J]. Chemical Physics Letters, 372, 399-402(2015).

    [79] Scuderi V, Bongiorno C, Faraci G, et al. Effect of the liquid environment on the formation of carbon nanotubes and graphene layers by arcing processes[J]. Carbon, 50, 2365-2369(2012).

    [80] Qiu Rui. Research on microwave plasma chemical vap deposition system[D]. Chengdu: University of Electronic Science Technology of China, 2012

    [81] Treesukkasem N, Chokradjaroen C, Theeramunkong S, et al. Synthesis of Au nanoparticles in natural matrices by liquid-phase plasma: effects on cytotoxic activity against normal and cancer cell lines[J]. ACS Applied Nano Materials, 2, 8051-8062(2019).

    [82] Höfft O, Endres F. Plasma electrochemistry in ionic liquids: an alternative route to generate nanoparticles[J]. Physical Chemistry Chemical Physics, 13, 13472-13478(2011).

    [83] Xu Hujun, He Chaohong, Lin Liangliang, et al. Direct formation of carbon supported Pt nanoparticles by plasma-based technique[J]. Materials Letters, 255, 126532(2019).

    [84] Richmonds C, Sankaran R M. Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations[J]. Applied Physics Letters, 93, 131501(2008).

    [85] Hu Xiulan, Shen Xiaodong, Takai O, et al. Facile fabrication of PtAu alloy clusters using solution plasma sputtering and their electrocatalytic activity[J]. Journal of Alloys and Compounds, 552, 351-355(2013).

    [86] Xie Suyuan, Ma Zhijie, Wang Chunfang, et al. Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution: a combination of physical and chemical processes[J]. Journal of Solid State Chemistry, 177, 3743-3747(2004).

    [87] Hu Xiulan, Zhang Xin, Shen Xiaodong, et al. Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water[J]. Plasma Chemistry and Plasma Processing, 34, 1129-1139(2014).

    [88] Saito G, Hosokai S, Akiyama T. Synthesis of ZnO nanoflowers by solution plasma[J]. Materials Chemistry and Physics, 130, 79-83(2011).

    [89] Jedsukontorn T, Ueno T, Saito N, et al. Facile preparation of defective black TiO2 through the solution plasma process: effect of parametric changes for plasma discharge on its structural and optical properties[J]. Journal of Alloys and Compounds, 726, 567-577(2017).

    [90] Sano N, Nakano J, Kanki T. Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen[J]. Carbon, 42, 686-688(2004).

    [91] Okada T, Kaneko T, Hatakeyama R. Conversion of toluene into carbon nanotubes using arc discharge plasmas in solution[J]. Thin Solid Films, 515, 4262-4265(2007).

    [92] Hamdan A, Kabbara H, Courty M A, et al. Synthesis of carbon–metal multi-strand nanocomposites by discharges in heptane between two metallic electrodes[J]. Plasma Chemistry and Plasma Processing, 37, 1069-1090(2017).

    [93] Panomsuwan G, Saito N, Ishizaki T. Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach[J]. Carbon, 98, 411-420(2016).

    [94] Li Xuanhe, Lin Liangliang, Chiang W H, et al. Microplasma synthesized gold nanoparticles for surface enhanced Raman spectroscopic detection of methylene blue[J]. Reaction Chemistry & Engineering, 7, 346-353(2022).

    [95] Liu Jiandi, He Bangbang, Chen Qiang, et al. Plasma electrochemical synthesis of cuprous oxide nanoparticles and their visible-light photocatalytic effect[J]. Electrochimica Acta, 222, 1677-1681(2016).

    [96] Tokushige M, Tsujimura H, Nishikiori T, et al. Formation of metallic Si and SiC nanoparticles from SiO2 particles by plasma-induced cathodic discharge electrolysis in chloride melt[J]. Electrochimica Acta, 100, 300-303(2013).

    CLP Journals

    [1] Ziyi Zhang, Yunming Tao, Ming Gao, Zhanghao Chen, Liangliang Lin. Microfluidic plasma: novel process intensification technique[J]. High Power Laser and Particle Beams, 2023, 35(5): 055005

    Lichen Rui, Zining Pang, Xuanhe Li, Jian Shen, Qing Li, Liangliang Lin. Liquid plasmas and their applications in nanomaterial synthesis[J]. High Power Laser and Particle Beams, 2022, 34(6): 069001
    Download Citation