• Chinese Journal of Lasers
  • Vol. 49, Issue 23, 2306002 (2022)
Han Yin1、2、**, Yingxiong Song1、2, Yingchun Li1、2、*, Song Chen1、2, and Yetian Huang1、2
Author Affiliations
  • 1Key Laboratory of Special Optical Fiber and Optical Access Network, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/CJL202249.2306002 Cite this Article Set citation alerts
    Han Yin, Yingxiong Song, Yingchun Li, Song Chen, Yetian Huang. Free-Space Optical Communication Atmospheric Turbulence Compensation Based on Multiple Input Multiple Output Mode Diversity Coherent Reception[J]. Chinese Journal of Lasers, 2022, 49(23): 2306002 Copy Citation Text show less
    Schematic of atmospheric refractive index fluctuation
    Fig. 1. Schematic of atmospheric refractive index fluctuation
    Modeling schematic for few-mode fiber (FMF) collection of free space optical communication (FSO) beam
    Fig. 2. Modeling schematic for few-mode fiber (FMF) collection of free space optical communication (FSO) beam
    Schematic of simulation system
    Fig. 3. Schematic of simulation system
    Offline processing steps based on LMS-MIMO algorithm
    Fig. 4. Offline processing steps based on LMS-MIMO algorithm
    LMS-MIMO adaptive equalizer structure diagram
    Fig. 5. LMS-MIMO adaptive equalizer structure diagram
    Constellation of X-polarization with one mode compensation when Cn2=3.51×10-14
    Fig. 6. Constellation of X-polarization with one mode compensation when Cn2=3.51×10-14
    Constellation of Y-polarization with one mode compensation when Cn2=3.51×10-14
    Fig. 7. Constellation of Y-polarization with one mode compensation when Cn2=3.51×10-14
    Constellation of X-polarization with three modes compensation when Cn2=3.51×10-14
    Fig. 8. Constellation of X-polarization with three modes compensation when Cn2=3.51×10-14
    Constellation of Y-polarization with three modes compensation when Cn2=3.51×10-14
    Fig. 9. Constellation of Y-polarization with three modes compensation when Cn2=3.51×10-14
    Constellation of X-polarization with one mode compensation when Cn2=2.6×10-13
    Fig. 10. Constellation of X-polarization with one mode compensation when Cn2=2.6×10-13
    Constellation of Y-polarization with one mode compensation when Cn2=2.6×10-13
    Fig. 11. Constellation of Y-polarization with one mode compensation when Cn2=2.6×10-13
    Constellation of X-polarization with three modes compensation when Cn2=2.6×10-13
    Fig. 12. Constellation of X-polarization with three modes compensation when Cn2=2.6×10-13
    Constellation of Y-polarization with three modes compensation when Cn2=2.6×10-13
    Fig. 13. Constellation of Y-polarization with three modes compensation when Cn2=2.6×10-13
    Relation diagram of optical signal-to-noise ratio (OSNR) and bit error rate (BER) when Cn2=2.1×10-16
    Fig. 14. Relation diagram of optical signal-to-noise ratio (OSNR) and bit error rate (BER) when Cn2=2.1×10-16
    Relation diagram of OSNR and BER when Cn2=3.51×10-14
    Fig. 15. Relation diagram of OSNR and BER when Cn2=3.51×10-14
    Relation diagram of OSNR and BER when Cn2=2.6×10-13
    Fig. 16. Relation diagram of OSNR and BER when Cn2=2.6×10-13
    ParameterValue
    Wavelength /nm1550
    Bit rate /(Gbit·s-1)100
    Sampling rate /GHz800
    Laser line width /kHz100
    Atmospheric channel length /km5
    Single/multimode fiber length /km1
    Launch waist /m0.02
    Receiver aperture diameter /m0.10
    Numerical aperture0.1339
    Core refractive index1.4485
    Value of fiber3.8
    Fiber core radius /μm7
    Supported modesLP01, LP11
    Fiber attenuation /(dB·km-1)0.19, 0.19
    Dispersion /[ps·(nm·km)-1]21.1, 20.7
    Differential group delay (DGD) /(ps·m-1)0, 2.1
    Dual polarization transmitter insertion loss of modulator /dB6
    Dual polarization receiver insertion loss /dB0
    Dual polarization receiver responsivity of photo-diode /(A·W-1)1
    Table 1. Parameters in simulation experiment
    Turbulence conditionRefractive index structure constantCn2
    Weak turbulence2.1×10-16
    Medium turbulence3.51×10-14
    Strong turbulence2.6×10-13
    Table 2. Refractive index structure parameters of atmospheric turbulence in simulation experiment
    Han Yin, Yingxiong Song, Yingchun Li, Song Chen, Yetian Huang. Free-Space Optical Communication Atmospheric Turbulence Compensation Based on Multiple Input Multiple Output Mode Diversity Coherent Reception[J]. Chinese Journal of Lasers, 2022, 49(23): 2306002
    Download Citation