• Photonics Research
  • Vol. 10, Issue 3, A43 (2022)
Christian Lafforgue1、2、*, Miguel Montesinos-Ballester1, Thi-Thuy-Duong Dinh1, Xavier Le Roux1, Eric Cassan1, Delphine Marris-Morini1, Carlos Alonso-Ramos1, and Laurent Vivien1、3、*
Author Affiliations
  • 1Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, 91120 Palaiseau, France
  • 2e-mail: lafforgue43@gmail.com
  • 3e-mail: laurent.vivien@c2n.upsaclay.fr
  • show less
    DOI: 10.1364/PRJ.445304 Cite this Article Set citation alerts
    Christian Lafforgue, Miguel Montesinos-Ballester, Thi-Thuy-Duong Dinh, Xavier Le Roux, Eric Cassan, Delphine Marris-Morini, Carlos Alonso-Ramos, Laurent Vivien. Supercontinuum generation in silicon photonics platforms[J]. Photonics Research, 2022, 10(3): A43 Copy Citation Text show less
    References

    [1] P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich. Generation of optical harmonics. Phys. Rev. Lett., 7, 118-119(1961).

    [2] F. Biancalana, D. V. Skryabin, A. V. Yulin. Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers. Phys. Rev. E, 70, 016615(2004).

    [3] Z. Zhu, T. G. Brown. Effect of frequency chirping on supercontinuum generation in photonic crystal fibers. Opt. Express, 12, 689-694(2004).

    [4] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [5] G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, D. Stifter. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Opt. Express, 14, 1596-1603(2006).

    [6] A. Mussot, M. Beaugeois, M. Bouazaoui, T. Sylvestre. Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. Opt. Express, 15, 11553-11563(2007).

    [7] L. Graini, A. Amine, A. M. Otmane, K. Saouchi, L. Bellatreche. 80 Gb/s WDM communication system based on spectral slicing of continuum generating by chirped pulse propagation in law normal dispersion photonic crystal fiber. Modeling Approaches and Algorithms for Advanced Computer Applications, 217-225(2013).

    [8] H. Saghaei. Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radioengineering, 26, 16-22(2017).

    [9] M. Veljkovic, D. Milovic, A. Maluckov, A. Biswas, F. B. Majid, C. M. Glenn. Chaotic dynamics and supercontinuum generation with cosh-Gaussian pulses in photonic-crystal fibers. Laser Phys., 28, 095109(2018).

    [10] C. Kaminski, R. Watt, A. Elder, J. Frank, J. Hult. Supercontinuum radiation for applications in chemical sensing and microscopy. Appl. Phys. B, 92, 367-378(2008).

    [11] L. Deniel, M. Gay, D. P. Galacho, C. Baudot, L. Bramerie, O. Ozolins, F. Boeuf, L. Vivien, C. Peucheret, D. Marris-Morini. DAC-less PAM-4 generation in the O-band using a silicon Mach-Zehnder modulator. Opt. Express, 27, 9740-9748(2019).

    [12] D. González-Andrade, C. Lafforgue, E. Durán-Valdeiglesias, X. Le Roux, M. Berciano, E. Cassan, D. Marris-Morini, A. V. Velasco, P. Cheben, L. Vivien. Polarization- and wavelength-agnostic nanophotonic beam splitter. Sci. Rep., 9, 3604(2019).

    [13] D. Oser, D. Pérez-Galacho, X. L. Roux, S. Tanzilli, L. Vivien, L. Labonté, E. Cassan, C. Alonso-Ramos. Silicon subwavelength modal Bragg grating filters with narrow bandwidth and high optical rejection. Opt. Lett., 45, 5784-5787(2020).

    [14] D. González-Andrade, D. Pérez-Galacho, M. Montesinos-Ballester, X. L. Roux, E. Cassan, D. Marris-Morini, P. Cheben, P. Cheben, N. Vulliet, S. Monfray. Dual-band fiber-chip grating coupler in a 300 mm silicon-on-insulator platform and 193 nm deep-UV lithography. Opt. Lett., 46, 617-620(2021).

    [15] D. Benedikovic, L. Virot, G. Aubin, J.-M. Hartmann, F. Amar, X. Le Roux, C. Alonso-Ramos, E. Cassan, D. Marris-Morini, P. Crozat. 40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip. Optica, 7, 775-783(2020).

    [16] K. Shi, S. H. Nam, P. Li, S. Yin, Z. Liu. Wavelength division multiplexed confocal microscopy using supercontinuum. Opt. Commun., 263, 156-162(2006).

    [17] N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, O. Bang. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl., 8, 11(2019).

    [18] S. Rao, M. Jensen, L. Grüner-Nielsen, J. T. Olsen, P. Heiduschka, B. Kemper, J. Schnekenburger, M. Glud, M. Mogensen, N. M. Israelsen. Shot-noise limited, supercontinuum-based optical coherence tomography. Light Sci. Appl., 10, 133(2021).

    [19] D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, M. G. Sowa. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications. Biophys. Rev., 3, 155-169(2011).

    [20] Z. Yaqoob, J. Wu, C. Yang. Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques, 39, S6-S13(2005).

    [21] L. Boivin, B. C. Collings. Spectrum slicing of coherent sources in optical communications. Opt. Fiber Technol., 7, 1-20(2001).

    [22] T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, H. Takahashi. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. Lightwave Technol., 24, 2311-2317(2006).

    [23] C. Ware, S. Cordette, C. Lepers, I. Fsaifes, B. Kibler, C. Finot, G. Millot. Spectral slicing of a supercontinuum source for WDM/DS-OCDMA application. 10th Anniversary International Conference on Transparent Optical Networks, 158-161(2008).

    [24] R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express, 21, 6045-6052(2013).

    [25] D. R. Carlson, D. D. Hickstein, A. Lind, J. B. Olson, R. W. Fox, R. C. Brown, A. D. Ludlow, Q. Li, D. Westly, H. Leopardi, T. M. Fortier, K. Srinivasan, S. A. Diddams, S. B. Papp. Photonic-chip supercontinuum with tailored spectra for counting optical frequencies. Phys. Rev. Appl., 8, 014027(2017).

    [26] C.-S. Brès. With a fine-tooth comb. Nat. Phys., 16, 600(2020).

    [27] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, T. W. Hänsch. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett., 84, 5102-5105(2000).

    [28] R. W. Boyd. Nonlinear Optics(2008).

    [29] G. Agrawal. Nonlinear Fiber Optics(2019).

    [30] F. Lu, W. H. Knox. Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers. Opt. Express, 12, 347-353(2004).

    [31] E. Treacy. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron., 5, 454-458(1969).

    [32] D. Grischkowsky, A. C. Balant. Optical pulse compression based on enhanced frequency chirping. Appl. Phys. Lett., 41, 1-3(1982).

    [33] C. Finot, B. Kibler, L. Provost, S. Wabnitz. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B, 25, 1938-1948(2008).

    [34] Y. Kodama, A. Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron., 23, 510-524(1987).

    [35] L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3, 247-268(2014).

    [36] I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood. Supercontinuum generation in silicon photonic wires. Opt. Express, 15, 15242-15249(2007).

    [37] L. Yin, Q. Lin, G. P. Agrawal. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett., 32, 391-393(2007).

    [38] L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, A. E. Willner. Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt. Express, 20, 1685-1690(2012).

    [39] N. Singh, M. Xin, D. Vermeulen, K. Shtyrkova, N. Li, P. T. Callahan, E. S. Magden, A. Ruocco, N. Fahrenkopf, C. Baiocco, B. P.-P. Kuo, S. Radic, E. Ippen, F. X. Kärtner, M. R. Watts. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light Sci. Appl., 7, 17131(2018).

    [40] N. Nader, D. L. Maser, F. C. Cruz, A. Kowligy, H. Timmers, J. Chiles, C. Fredrick, D. A. Westly, S. W. Nam, R. P. Mirin, J. M. Shainline, S. Diddams. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy. APL Photon., 3, 036102(2018).

    [41] T. T. D. Dinh, X. Le Roux, M. Montesinos-Ballester, C. Lafforgue, E. Cassan, D. Marris-Morini, L. Vivien, C. Alonso-Ramos. Internal work from the minaphot team at c2n,”(2021).

    [42] N. Singh, M. Raval, E. Ippen, M. R. Watts, F. X. Kärtner. Supercontinuum generation in silicon Bragg grating waveguide. Appl. Phys. Lett., 118, 071106(2021).

    [43] N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. Casas-Bedoya, A. Read, P. Atanackovic, S. G. Duvall, S. Palomba, B. Luther-Davies, S. Madden, D. J. Moss, B. J. Eggleton. Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire. Optica, 2, 797-802(2015).

    [44] R. Kou, T. Hatakeyama, J. Horng, J.-H. Kang, Y. Wang, X. Zhang, F. Wang. Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. Opt. Lett., 43, 1387-1390(2018).

    [45] N. Nader, A. Kowligy, J. Chiles, E. J. Stanton, H. Timmers, A. J. Lind, F. C. Cruz, D. M. B. Lesko, K. A. Briggman, S. W. Nam, S. A. Diddams, R. P. Mirin. Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 6, 1269-1276(2019).

    [46] C. Ciret, S.-P. Gorza. Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguides. J. Opt. Soc. Am. B, 34, 1156-1162(2017).

    [47] N. Singh, D. Vermulen, A. Ruocco, N. Li, E. Ippen, F. X. Kärtner, M. R. Watts. Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Opt. Express, 27, 31698-31712(2019).

    [48] J. Wei, C. Ciret, M. Billet, F. Leo, B. Kuyken, S.-P. Gorza. Supercontinuum generation assisted by wave trapping in dispersion-managed integrated silicon waveguides. Phys. Rev. Appl., 14, 054045(2020).

    [49] Y. Cheng, J. Yuan, C. Mei, F. Li, Z. Kang, B. Yan, X. Zhou, Q. Wu, K. Wang, X. Sang, K. Long, C. Yu, G. Farrell. Self-similar picosecond pulse compression for supercontinuum generation at mid-infrared wavelength in silicon strip waveguides. Opt. Commun., 454, 124380(2020).

    [50] A. Della Torre, M. Sinobad, R. Armand, B. Luther-Davies, P. Ma, S. Madden, A. Mitchell, D. J. Moss, J.-M. Hartmann, V. Reboud, J.-M. Fedeli, C. Monat, C. Grillet. Mid-infrared supercontinuum generation in a low-loss germanium-on-silicon waveguide. APL Photon., 6, 016102(2021).

    [51] M. Sinobad, C. Monat, B. Luther-davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J.-M. Hartmann, J.-M. Fedeli, C. Grillet. Mid-infrared octave spanning supercontinuum generation to 85 μm in silicon-germanium waveguides. Optica, 5, 360-366(2018).

    [52] M. Sinobad, A. DellaTorre, R. Armand, B. Luther-Davies, P. Ma, S. Madden, A. Mitchell, D. J. Moss, J.-M. Hartmann, J.-M. Fedeli, C. Monat, C. Grillet. Mid-infrared supercontinuum generation in silicon-germanium all-normal dispersion waveguides. Opt. Lett., 45, 5008-5011(2020).

    [53] M. Montesinos-Ballester, C. Lafforgue, J. Frigerio, A. Ballabio, V. Vakarin, Q. Liu, J. M. Ramirez, X. L. Roux, D. Bouville, A. Barzaghi, C. Alonso-Ramos, L. Vivien, G. Isella, D. Marris-Morini. On-chip mid-infrared supercontinuum generation from 3 to 13 μm wavelength. ACS Photon., 7, 3423-3429(2020).

    [54] D. T. H. Tan, K. J. A. Ooi, D. K. T. Ng. Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform. Photon. Res., 6, B50-B66(2018).

    [55] T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, F. Y. Gardes. Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications. J. Phys. D, 50, 025106(2017).

    [56] J. Chiles, N. Nader, D. D. Hickstein, S. P. Yu, T. C. Briles, D. Carlson, H. Jung, J. M. Shainline, S. Diddams, S. B. Papp, S. W. Nam, R. P. Mirin. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett., 43, 1527-1530(2018).

    [57] H. El Dirani, M. Casale, S. Kerdiles, C. Socquet-Clerc, X. Letartre, C. Monat, C. Sciancalepore. Crack-free silicon-nitride-on-insulator nonlinear circuits for continuum generation in the C-band. IEEE Photon. Technol. Lett., 30, 355-358(2018).

    [58] H. El Dirani, A. Kamel, M. Casale, S. Kerdiles, C. Monat, X. Letartre, M. Pu, L. K. Oxenløwe, K. Yvind, C. Sciancalepore. Annealing-free Si3N4 frequency combs for monolithic integration with Si photonics. Appl. Phys. Lett., 113, 081102(2018).

    [59] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [60] A. R. Johnson, A. S. Mayer, A. Klenner, K. Luke, E. S. Lamb, M. R. E. Lamont, C. Joshi, Y. Okawachi, F. W. Wise, M. Lipson, U. Keller, A. L. Gaeta. Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 40, 5117-5120(2015).

    [61] A. S. Mayer, A. Klenner, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, U. Keller. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express, 23, 15440-15451(2015).

    [62] T. Wang, D. K. T. Ng, S.-K. Ng, Y.-T. Toh, A. K. L. Chee, G. F. R. Chen, Q. Wang, D. T. H. Tan. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides: supercontinuum generation in bandgap engineered, back-end CMOS. Laser Photon. Rev., 9, 498-506(2015).

    [63] H. Zhao, B. Kuyken, S. Clemmen, F. Leo, A. Subramanian, A. Dhakal, P. Helin, S. Severi, E. Brainis, G. Roelkens, R. Baets. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett., 40, 2177-2180(2015).

    [64] A. Klenner, A. S. Mayer, A. R. Johnson, K. Luke, M. R. E. Lamont, Y. Okawachi, M. Lipson, A. L. Gaeta, U. Keller. Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt. Express, 24, 11043-11053(2016).

    [65] C. Herkommer, A. Billat, H. Guo, D. Grassani, C. Zhang, M. H. P. Pfeiffer, C.-S. Bres, T. J. Kippenberg. Mid-infrared frequency comb generation with silicon nitride nano-photonic waveguides. Nat. Photonics, 12, 330-335(2018).

    [66] Y. Okawachi, M. Yu, J. Cardenas, X. Ji, A. Klenner, M. Lipson, A. L. Gaeta. Carrier envelope offset detection via simultaneous supercontinuum and second-harmonic generation in a silicon nitride waveguide. Opt. Lett., 43, 4627-4630(2018).

    [67] C. Lafforgue, S. Guerber, J. M. Ramirez, G. Marcaud, C. Alonso-Ramos, X. Le Roux, D. Marris-Morini, E. Cassan, C. Baudot, F. Boeuf. Broadband supercontinuum generation in nitrogen-rich silicon nitride waveguides using a 300 mm industrial platform. Photon. Res., 8, 352-358(2020).

    [68] J. P. Epping, T. Hellwig, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. van der Slot, C. J. Lee, C. Fallnich. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express, 23, 19596-19604(2015).

    [69] M. A. G. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. van der Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, K.-J. Boller. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express, 25, 1542-1554(2017).

    [70] D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg, C.-S. Brès. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nat. Commun., 10, 1553(2019).

    [71] H. Guo, W. Weng, J. Liu, F. Yang, W. Hänsel, C. S. Brès, L. Thévenaz, R. Holzwarth, T. J. Kippenberg. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 7, 1181-1188(2020).

    [72] E. Tagkoudi, C. G. Amiot, G. Genty, C.-S. Brès. Extreme polarization-dependent supercontinuum generation in an uncladded silicon nitride waveguide. Opt. Express, 29, 21348-21357(2021).

    [73] P. Manurkar, E. F. Perez, D. D. Hickstein, D. R. Carlson, J. Chiles, D. A. Westly, E. Baumann, S. A. Diddams, N. R. Newbury, K. Srinivasan, S. B. Papp, I. Coddington. Fully self-referenced frequency comb consuming 5 watts of electrical power. OSA Contin., 1, 274-282(2018).

    [74] K. Van Gasse, S. Uvin, V. Moskalenko, S. Latkowski, G. Roelkens, E. Bente, B. Kuyken. Recent advances in the photonic integration of mode-locked laser diodes. IEEE Photon. Technol. Lett., 31, 1870-1873(2019).

    Christian Lafforgue, Miguel Montesinos-Ballester, Thi-Thuy-Duong Dinh, Xavier Le Roux, Eric Cassan, Delphine Marris-Morini, Carlos Alonso-Ramos, Laurent Vivien. Supercontinuum generation in silicon photonics platforms[J]. Photonics Research, 2022, 10(3): A43
    Download Citation