• Matter and Radiation at Extremes
  • Vol. 7, Issue 4, 045902 (2022)
Yuxue Zhang*, Bo Qing, Yang Zhao, Tianming Song, Zhiyu Zhang, Gang Xiong, Chengwu Huang, Tuo Zhu, Min Lv, Yan Zhao, Jiyan Zhang, and Jiamin Yang
Author Affiliations
  • Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900, China
  • show less
    DOI: 10.1063/5.0081960 Cite this Article
    Yuxue Zhang, Bo Qing, Yang Zhao, Tianming Song, Zhiyu Zhang, Gang Xiong, Chengwu Huang, Tuo Zhu, Min Lv, Yan Zhao, Jiyan Zhang, Jiamin Yang. Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH[J]. Matter and Radiation at Extremes, 2022, 7(4): 045902 Copy Citation Text show less
    References

    [1] G.Ren, S.Li, W. Y.Huo. Laser ablation under different electron heat conduction models in inertial confinement fusion. High Energy Density Phys., 27, 12-17(2018).

    [2] J. A.Tarvin, D. C.Slater, W. B.Fechner, P. D.Rockett, J. T.Larsen. Mass-ablation rates in a spherical laser-produced plasma. Phys. Rev. Lett., 51, 1355-1358(1983).

    [3] B. L.Henke, M. C.Richardson, J.Delettrez, P. A.Jaanimagi. Temporal dependence of the mass-ablation rate in uv-laser-irradiated spherical targets. Phys. Rev. A, 34, 1322-1327(1986).

    [4] R. E.Olson, R. J.Leeper, O. L.Landen, G. A.Rochau. X-ray ablation rates in inertial confinement fusion capsule materials. Phys. Plasmas, 18, 032706(2011).

    [5] X. T.He. The updated advancements of inertial confinement fusion program in China. J. Phys.: Conf. Ser., 688, 012029(2016).

    [6] S. F. B.Morse, T. J.Kessler, M.Wittman, J. A.Delettrez, R. S.Craxton, R.Short, M. J.Shoup, W. R.Donaldson, S. D.Jacobs, J. M.Soures, B.Yaakobi, P. A.Jaanimagi, R.Boni, S. J.Loucks, D. L.Brown, R. L.Keck, T. R.Boehly, P. W.McKenty, J. H.Kelly, K.Kearney, C. P.Verdon, S. A.Kumpan, S. A.Letzring, A.Babushkin, R. L.McCrory, W.Seka, D. D.Meyerhofer, R. L.Kremens, A. W.Schmid, S.Papernov, D. J.Smith, R.Epstein, D. K.Bradley, A.Okishev, S.Skupsky, R. E.Bahr, F. J.Marshall, M.Skeldon, G.Pien, J. P.Knauer, S.Swales, L. D.Lund, D. J.Lonobile. Direct-drive laser-fusion experiments with the OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasmas, 3, 2108-2112(1996).

    [7] R. L.Berger, S. G.Glendinning, O. L.Landen, R. L.Kauffman, S. H.Glenzer, J. D.Lindl, S. W.Haan, L. J.Suter, P.Amendt. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339-491(2004).

    [8] L. B.Hopkins, C. J.Cerjan, C. R.Brune, H. G.Rinderknecht, M.Couder, N.Izumi, J.Frenje, L.Bernstein, C.Hagmann, D. L.Bleuel, W.Stoeffl, B.Spears, F.Merrill, D. H.Kalantar, E. A.Henry, R.Hatarik, R. M.Bionta, A.Hamza, C.Velsko, R.Tommasini, A.Ratkiewicz, H. Y.Khater, J. A.Caggiano, D.Sayre, A.Zylstra, K.Moody, G.Grim, W. S.Cassata, M.Wiescher, C.Yeamans, D.Schneider, A.Kritcher, E. P.Hartouni, P.Neumayer, M.Gatu-Johnson, H.Herrmann, Y.Kim, N.Gharibyan, D.Fittinghoff, D.Shaughnessy, Y. A.Litvinov. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research. J. Phys. G: Nucl. Part. Phys., 45, 033003(2018).

    [9] D. K.Ilnitsky, S. I.Ashitkov, P. S.Komarov, A. A.Yurkevich, N. A.Inogamov, V. V.Zhakhovsky, M. B.Agranat, Y. V.Petrov, V. A.Khokhlov. Ablation of gold irradiated by femtosecond laser pulse: Experiment and modeling. J. Phys.: Conf. Ser., 774, 012097(2016).

    [10] L.Zhang, S.Jiang, J.Zheng, H.Li, F.Wang, L.Kuang. Mitigating wall plasma expansion and enhancing x-ray emission by using multilayer gold films as hohlraum material. Nucl. Fusion, 61, 086004(2021).

    [11] O.Larroche, J. P.Matte, M.Casanova, F.Vidal. Modeling and effects of nonlocal electron heat flow in planar shock waves. Phys. Plasmas, 2, 1412-1420(1995).

    [12] X.Zeng, S.-B.Wen, X.Mao, R.Greif, R. E.Russo. Energy deposition and shock wave propagation during pulsed laser ablation in fused silica cavities. J. Phys. D: Appl. Phys., 37, 1132-1136(2004).

    [13] S. P.Obenschain, J.Weaver, V.Serlin, Y.Aglitskiy, M.Karasik, J. H.Gardner, N.Metzler, A. L.Velikovich, S. T.Zalesak, A. J.Schmitt. Classical and ablative Richtmyer–Meshkov instability and other ICF-relevant plasma flows diagnosed with monochromatic x-ray imaging. Phys. Scr., 2008, 014021.

    [14] S. C.Wilks, V. Y.Glebov, H. G.Rinderknecht, M. J.Rosenberg, A. B.Zylstra, F. H.Séguin, D.Svyatsky, M.Gatu Johnson, T. C.Sangster, J. A.Frenje, G.Kagan, C. K.Li, H.Sio, N. M.Hoffman, P. A.Amendt, C.Stoeckl, R. D.Petrasso. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF. Nucl. Fusion, 57, 066014(2017).

    [15] G.Kagan, E.Vold, A. N.Simakov, K.Molvig, L.Yin. Self-similar solutions for multi-species plasma mixing by gradient driven transport. Plasma Phys. Controlled Fusion, 60, 054010(2018).

    [16] P. A.Pinto, A.Gouveia, D. M.Chambers, E.Wolfrum, S. H.Glenzer, P.Soundhauss, R. S.Marjoribanks, S.Topping, J. S.Wark, O.Renner, P. E.Young, J.Hawreliak, R. J.Kingham. Thomson scattering measurements of heat flow in a laser-produced plasma. J. Phys. B: At., Mol. Opt. Phys., 37, 1541-1551(2004).

    [17] A.Roettgen, I.Shkurenkov, M.Simeni Simeni, W. R.Lempert, V.Petrishchev, I. V.Adamovich. Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium. Plasma Sources Sci. Technol., 25, 055009(2016).

    [18] M.?míd, H. M.Johns, C. J.Fontes, C. W.Greeff, K.Falk, C. L.Fryer, M.Holec, D. W.Schmidt, D. S.Montgomery. Measurement of preheat due to nonlocal electron transport in warm dense matter. Phys. Rev. Lett., 120, 025002(2018).

    [19] D.Colombant, A.Schmitt, W.Manheimer. Analytic insights into nonlocal energy transport. I. Krook models. Phys. Plasmas, 25, 082711(2018).

    [20] J. L.Peacher, K. M.Watson. Doppler shift in frequency in the transport of electromagnetic waves through an underdense plasma. J. Math. Phys., 11, 1496-1504(1970).

    [21] D. P.Turnbull, D. A.Liedahl, O. S.Jones, H. A.Scott, M. D.Rosen, C. A.Thomas, W. A.Farmer, S. B.Hansen, J. D.Salmonson, A. S.Moore, L. J.Suter, D. J.Strozzi, C. W.Mauche, M. A.Barrios. Progress towards a more predictive model for hohlraum radiation drive and symmetry. Phys. Plasmas, 24, 056312(2017).

    [22] J. L.Kline, J. D.Hager. Aluminum X-ray mass-ablation rate measurements. Matter Radiat. Extremes, 2, 16-21(2017).

    [23] C.Mileham, C. R.Stillman, S. T.Ivancic, D. H.Froula, I. A.Begishev, P. M.Nilson, A. B.Sefkow. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems. Phys. Rev. E, 97, 063208(2018).

    [24] E. G.Hill, S. J.Rose, G.Pérez-Callejo. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package. High Energy Density Phys., 26, 56-67(2018).

    [25] A.Sasaki, K.Shigemori, Y.Izawa, S.Fujioka, H.Nishimura, T.Ando, N.Ueda, Y.Shimada, K.Nagai, K.Nishihara, K.Mima, M.Nakai, K.Hashimoto, A.Sunahara, Y.Tao, N.Miyanaga, T.Okuno, T.Nishikawa, M.Yamaura, T.Norimatsu. Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas. Phys. Rev. Lett., 95, 235004(2005).

    [26] Z.Zhang, G.Gogos. Theory of shock wave propagation during laser ablation. Phys. Rev. B, 69, 235403(2004).

    [27] V. N.Goncharov, S. P.Regan, P. B.Radha, D.Shvarts, R. C.Mancini, R.Epstein, H.Sawada, J. P.Knauer, V. A.Smalyuk, W.Seka, D.Li, J. A.Marozas, O. V.Gotchev, B.Yaakobi, I. V.Igumenshchev, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, T. R.Boehly, J. A.Delettrez, T. C.Sangster, S.Skupsky, F. J.Marshall. Laser absorption, mass ablation rate, and shock heating in direct-drive inertial confinement fusion. Phys. Plasmas, 14, 056305(2007).

    [28] J.Meyer-ter-Vehn, R. F.Schmalz, R.Ramis. Radiation heat wave as a basic feature in laser-irradiated foils. Phys. Rev. A, 34, 2177-2184(1986).

    [29] S.Hulin, C.Fourment, F.Durut, G.Soullié, J.Breil, B.Villette, P. H.Maire, G.Schurtz, V.Tikhonchuk, S.Gary, F.Thais, J. C.Gauthier, P.Nicola?, C.Chenais-Popovics, J. L.Feugeas, C.Reverdin, O.Peyrusse. Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Phys. Rev. Lett., 98, 095002(2007).

    [30] C. P.Ridgers, R. J.Kingham, A. G.Thomas. Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas. Phys. Rev. Lett., 100, 075003(2008).

    [31] D. R.Gray, J. D.Kilkenny. The measurement of ion acoustic turbulence and reduced thermal conductivity caused by a large temperature gradient in a laser heated plasma. Phys. Plasmas, 22, 81-111(1980).

    [32] T. J. M.Boyd, H. C.Barr. Ion turbulence and thermal transport in laser-produced plasmas. J. Plasma Phys., 27, 525-542(1982).

    [33] B.Zhao, J.Li, J.Zheng, H.Li. Study of flux limiter using Fokker–Planck and fluid simulations of planar laser-driven ablation. Plasma Phys. Controlled Fusion, 52, 085008(2010).

    [34] D.Bradley, J. D.Moody, D. A.Callahan, O.Jones, A.Nikroo, J.Jaquez, H.Huang, R. L.Kauffman, S. B.Hansen, S. P.Regan, J.Kroll, M. B.Schneider, D. E.Hinkel, O.Landen, M. A.Barrios, J. S.Ross, G. V.Brown, D. A.Liedahl, K. B.Fournier, A. S.Moore. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility. Phys. Plasmas, 23, 056307(2016).

    [35] K.Widmann, A.Nikroo, J.Kroll, R. L.Kauffman, D. A.Liedahl, J.Jaquez, J. D.Kilkenny, G.Pérez-Callejo, W.Farmer, M. A.Barrios, O. L.Landen, H.Chen, J. D.Moody, D. B.Thorn, M.Sherlock, N. B.Meezan, M. B.Schneider, S. A.Maclaren, O.Jones, L. J.Suter. Developing an experimental basis for understanding transport in NIF hohlraum plasmas. Phys. Rev. Lett., 121, 095002(2018).

    [36] G. B.Zimmerman, R. P. J.Town, R. A.London, P. A.Michel, W. L.Kruer, M. D.Rosen, L. J.Suter, D. E.Hinkel, H. A.Scott, J. A.Harte, D. A.Callahan, E. A.Williams, L.Divol. The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums. High Energy Density Phys., 7, 180-190(2011).

    [37] E. M.Epperlein. Fokker–Planck modeling of electron transport in laser-produced plasmas. Laser Part. Beams, 12, 257-272(1994).

    [38] H.Nagatomo, K.Mima, A.Sunahara, T.Johzaki. Non-local electron transport in laser-produced plasmas. J. Phys. IV, 133, 193-195(2006).

    [39] Observation of the non-local electron transport effect by using phase zone plate. J. Phys.: Conf. Ser., 112, 022008(2008).

    [40] M.Sherlock, A. G. R.Thomas, R. J.Kingham, C. P.Ridgers, A. R.Bell, A. P. L.Robinson, M.Tzoufras. A review of Vlasov–Fokker–Planck numerical modeling of inertial confinement fusion plasma. J. Comput. Phys., 231, 1051-1079(2012).

    [41] E. L.Vold, J.Katz, D. P.Higginson, H. G.Rinderknecht, S. C.Wilks, J. S.Ross, H. S.Park, P. A.Amendt, N. M.Hoffman, D.Haberberger, G.Kagan, D. H.Froula, B. D.Keenan. Highly resolved measurements of a developing strong collisional plasma shock. Phys. Rev. Lett., 120, 095001(2018).

    [42] D.Ya-Lin, Z.Bin, Z.Jian. Numerical investigation of non-local electron transport in laser-produced plasmas. Chin. Phys., 16, 3742-3746(2007).

    [43] M.Bonitz, T.Ott, Z.Donkó. Effect of correlations on heat transport in a magnetized strongly coupled plasma. Phys. Rev. E, 92, 063105(2015).

    [44] T.Lippert, A.Wokaun, D. J.Funk, M.Hauer. Time resolved study of the laser ablation induced shockwave. Thin Solid Films, 453-454, 584-588(2004).

    [45] W.Pei, J.Yang, Z.Zheng, Y.Ding, B.Zhang, Y.Xu, J.Zhang, X.Hu, J.Yan, Y.Ding, G.Yang. Two-tracer spectroscopy diagnostics of temperature profile in the conduction layer of a laser-ablated plastic foil. Phys. Plasmas, 17, 113302(2010).

    [46] J. D.Colvin, H.Nishimura, K.Koga, K. C.Brown, N.Tanaka, A.Yogo, Z.Zhang, J. F.Davis, K. B.Fournier, H.Matsukuma, G. E.Kemp. The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma. Phys. Plasmas, 25, 032702(2018).

    [47] M.Tanabe et al. Characterization of heat-wave propagation through laser-driven Ti-doped underdense plasma. High Energy Density Phys., 6, 89-94(2010).

    [48] M. B.Schneider, L. J.Suter, G. D.Kerbel, M. A.Barrios, R. L.Kauffman, O. S.Jones, A. S.Moore, J. D.Moody, W. A.Farmer, D. A.Liedahl, N.Lemos, O. L.Landen, D. J.Strozzi, D. C.Eder, D. E.Hinkel, J. M.Koning. Heat transport modeling of the dot spectroscopy platform on NIF. Plasma Phys. Controlled Fusion, 60, 044009(2018).

    [49] J. C.Stewart, K. D. J. Pyatt. Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203(1966).

    [50] M.Chen, R.Lee, Y.Ralchenko, H.Chung. The how to for FLYCHK(2008).

    [51] R.Schmalz, R.Ramis, J.Meyer-Ter-Vehn. Multi—A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun., 49, 475-505(1988).

    Yuxue Zhang, Bo Qing, Yang Zhao, Tianming Song, Zhiyu Zhang, Gang Xiong, Chengwu Huang, Tuo Zhu, Min Lv, Yan Zhao, Jiyan Zhang, Jiamin Yang. Experimental and simulation studies of thermal transport based on plasma flow motion in laser-ablated dense regions of Au and CH[J]. Matter and Radiation at Extremes, 2022, 7(4): 045902
    Download Citation