• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516004 (2021)
Zhanfeng Ma, Shuo Liu, Lang Pei*, and Jiasong Zhong**
Author Affiliations
  • Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
  • show less
    DOI: 10.3788/LOP202158.1516004 Cite this Article Set citation alerts
    Zhanfeng Ma, Shuo Liu, Lang Pei, Jiasong Zhong. Research Progress on Afterglow Mechanism and Application of Sr2MgSi2O7∶Eu2+,Dy3+ Long-Afterglow Phosphor[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516004 Copy Citation Text show less
    References

    [1] Li Y, Gecevicius M, Qiu J. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).

    [2] Terraschke H, Wickleder C. UV, blue, green, yellow, red, and small: newest developments on Eu2+-doped nanophosphors[J]. Chemical Reviews, 115, 11352-11378(2015).

    [3] Abdukayum A, Chen J T, Zhao Q et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. Journal of the American Chemical Society, 135, 14125-14133(2013).

    [4] Liu Y L, Kuang J Y, Lei B F et al. Color-control of long-lasting phosphorescence (LLP) through rare earth ion-doped cadmium metasilicate phosphors[J]. Journal of Materials Chemistry, 15, 4025-4031(2005).

    [5] Arras J, Bräse S. The world needs new colors: cutting edge mobility focusing on long persistent luminescence materials[J]. ChemPhotoChem, 2, 54-66(2018).

    [6] Pan M, Zhu C Y, Wang Z. Long persistence luminescence: shining pearl of life[J]. Chinese Journal of Luminescence, 41, 1087-1092(2020).

    [7] Li X, Wang X D, Ma H et al. Research progress on adjusting and controlling luminescence performance of GaN∶Eu3+ material[J]. Laser & Optoelectronics Progress, 57, 210004(2020).

    [8] Kang R Y, Yan L L, Zhang Z Q et al. Research progresses, opportunities and challenges of perovskite light-emitting diodes[J]. Laser & Optoelectronics Progress, 58, 070001(2021).

    [9] Wu S Q, Li Y, Ding W H et al. Recent advances of persistent luminescence nanoparticles in bioapplications[J]. Nano-Micro Letters, 12, 1-26(2020).

    [10] Pan Z, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 11, 58-63(2011).

    [11] Li J, Huang X L, Zhao X et al. pH-responsive torpedo-like persistent luminescence nanoparticles for autofluorescence-free biosensing and high-level information encryption[J]. Angewandte Chemie, 133, 2428-2435(2021).

    [12] Kang F W, Sun G H, Boutinaud P et al. Recent advances and prospects of persistent luminescent materials as inner secondary self-luminous light source for photocatalytic applications[J]. Chemical Engineering Journal, 403, 126099(2021).

    [13] Yang Q T, Renaguli A, Yan Y et al. Brief introduction of Cr3+-doped persistent luminescent nanoparticles in biomedical applied research[J]. Laser & Optoelectronics Progress, 58, 0800002(2021).

    [14] Renagul A, Yang T S, Liu W G et al. Synthesis and photoluminescence ‍properties ‍of ‍Zn1+xGa2-0.01-yGexO3x+4∶0.01Cr,yBi[J]. Laser & Optoelectronics Progress, 58, 2116001(2021).

    [15] Liu Y L, Lei B F, Kuang J Y et al. Advances in long lasting phosphorencent materials[J]. Chinese Journal of Inorganic Chemistry, 25, 1323-1329(2009).

    [16] Li C Y, Su Q, Qiu J R. Development of long-lasting phosphorescent materials doped by RE ions[J]. Chinese Journal of Luminescence, 24, 19-27, 112(2003).

    [17] Wang Y, Wu X J, Cai Y F et al. Research progress of rare earth doped Sr2MgSi2O7 long afterglow luminescent materials[J]. Powder Metallurgy Technology, 38, 143-149(2020).

    [18] Matsuzawa T, Aoki Y, Takeuchi N et al. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+, Dy3+[J]. Journal of the Electrochemical Society, 143, 2670-2673(1996).

    [19] Sun S K, Wang H F, Yan X P. Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics[J]. Accounts of Chemical Research, 51, 1131-1143(2018).

    [20] Dorenbos P. Mechanism of persistent luminescence in Sr2MgSi2O7∶Eu2+; Dy3+[J]. Physica Status Solidi (b), 242, R7-R9(2005).

    [21] He L, Jia B L, Che L Y et al. Preparation and optical properties of afterglow Sr2MgSi2O7∶Eu2+, Dy3+electrospun nanofibers[J]. Journal of Luminescence, 172, 317-322(2016).

    [22] Lin Y H, Tang Z L, Zhang Z T et al. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor[J]. Journal of Materials Science Letters, 20, 1505-1506(2001).

    [23] Sahu I P, Bisen D P, Brahme N et al. Enhancement of the photoluminescence and long afterglow properties of Sr2MgSi2O7∶Eu2+ phosphor by Dy3+ co-doping[J]. Luminescence, 30, 1318-1325(2015).

    [24] Furusho H, Hölsä J, Laamanen T et al. Probing lattice defects in Sr2MgSi2O7∶Eu2+,Dy3+[J]. Journal of Luminescence, 128, 881-884(2008).

    [25] Jia D D, Jia W Y, Jia Y. Long persistent alkali-earth silicate phosphors doped with Eu2+, Nd3+[J]. Journal of Applied Physics, 101, 023520(2007).

    [26] Homayoni H, Ma L, Zhang J Y et al. Synthesis and conjugation of Sr2MgSi2O7∶Eu2+,Dy3+ water soluble afterglow nanoparticles for photodynamic activation[J]. Photodiagnosis and Photodynamic Therapy, 16, 90-99(2016).

    [27] Maghsoudipour A, Sarrafi M H, Moztarzadeh F et al. Influence of boric acid on properties of Sr2MgSi2O7∶Eu2+,Dy3+ phosphors[J]. Pigment & Resin Technology, 39, 32-35(2010).

    [28] Hölsä J, Laamanen T, Lastusaari M et al. Defect aggregates in the Sr2MgSi2O7 persistent luminescence material[J]. Journal of Rare Earths, 29, 1130-1136(2011).

    [29] Duan H, Dong Y Z, Huang Y et al. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor[J]. Physics Letters A, 380, 1056-1062(2016).

    [30] Kimata M. The structural properties of synthetic Sråkermanite, Sr2MgSi2O7[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 163, 295-304(1983).

    [31] Wu H Y, Hu Y H, Wang Y H et al. Influence on the luminescence properties of the lattice defects in Sr2MgSi2O7∶Eu2+, M (M=Dy3+, La3+ or Na1+)[J]. Journal of Alloys and Compounds, 497, 330-335(2010).

    [32] Aitasalo T, Hassinen J, Hölsä J et al. Synchrotron radiation investigations of the Sr2MgSi2O7∶Eu2+, R3+ persistent luminescence materials[J]. Journal of Rare Earths, 27, 529-538(2009).

    [33] Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4∶Eu2+, Dy3+ and CaAl2O4∶Eu2+,Nd3+[J]. Journal of Luminescence, 72/73/74, 287-289(1997).

    [34] Nakamura T, Kaiya K, Takahashi N et al. High frequency EPR of europium(II)-doped strontium aluminate phosphors[J]. Journal of Materials Chemistry, 10, 2566-2569(2000).

    [35] Aitasalo T, Dereń P, Hölsä J et al. Persistent luminescence phenomena in materials doped with rare earth ions[J]. Journal of Solid State Chemistry, 171, 114-122(2003).

    [36] Hölsä J, Aitasalo T, Jungner H et al. Role of defect states in persistent luminescence materials[J]. Journal of Alloys and Compounds, 374, 56-59(2004).

    [37] Dorenbos P. Energy of the first 4f 7→4f 65d transition of Eu2+ in inorganic compounds[J]. Journal of Luminescence, 104, 239-260(2003).

    [38] Dorenbos P. The Eu3+ charge transfer energy and the relation with the band gap of compounds[J]. Journal of Luminescence, 111, 89-104(2005).

    [39] Si J H, Kitaoka K, Qiu J R et al. Optically encoded second-harmonic generation in germanosilicate glass by a femtosecond laser[J]. Optics Letters, 24, 911-913(1999).

    [40] Qiu J R, Kojima K, Miura K et al. Infrared femtosecond laser pulse-induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass[J]. Optics Letters, 24, 786-788(1999).

    [41] Clabau F, Rocquefelte X, Jobic S et al. Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+[J]. Chemistry of Materials, 17, 3904-3912(2005).

    [42] Zhou J H, Long Z W, Wang Q et al. Role of oxygen vacancies in long persistent phosphor Ca2Ga2GeO7∶Zn2+[J]. Journal of the American Ceramic Society, 101, 2695-2700(2018).

    [43] Zhuang Y X, Wang L, Lü Y et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials[J]. Advanced Functional Materials, 28, 1705769(2018).

    [44] Sun Y Q, Liu S T, Sun L Y et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design[J]. Nature Communications, 11, 1-11(2020).

    [45] Wang J, Ma Q Q, Wang Y Q et al. Recent progress in biomedical applications of persistent luminescence nanoparticles[J]. Nanoscale, 9, 6204-6218(2017).

    [46] Liu J M, Liu Y Y, Zhang D D et al. Synthesis of plasmon-enhanced near-infrared persistent luminescence GdAlO3∶Mn4+,Ge4+@Au core-shell nanoprobes for in vivo tri-modality bioimaging[J]. ACS Applied Materials & Interfaces, 8, 29939-29949(2016).

    [47] Liu Y Y, Liu J M, Fang G Z et al. Biosensor detection and imaging based on persistence luminescence nanoprobe[J]. Progress in Chemistry, 29, 667-682(2017).

    [48] Kang R, Zhang S A, Lian H W et al. Research progress on design strategy and application of persistent luminescence nanotheranostics[J]. Chinese Journal of Luminescence, 41, 1614-1626(2020).

    [49] Su G M, Shen R C, Tan J et al. Progress on the application of long persistent phosphors in photocatalytic system[J]. Chemical Journal of Chinese Universities, 41, 2404-2414(2020).

    [50] Yang X Y, Tang B M, Cao X J et al. Light-storing assisted photocatalytic composite g-C3N4/Sr2MgSi2O7∶(Eu, Dy) with sustained activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 411, 113202(2021).

    [51] Hong K, Hong J, Kim Y. Long lifetime g-C3N4 photocatalyst coupled with phosphorescent material working under dark condition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 396, 112520(2020).

    [52] Yin H B, Chen X F, Hou R J et al. Ag/BiOBr film in a rotating-disk reactor containing long-afterglow phosphor for round-the-clock photocatalysis[J]. ACS Applied Materials & Interfaces, 7, 20076-20082(2015).

    [53] Liu X M, Chen X Y, Li Y Z et al. A g-C3N4@Au@ SrAl2O4∶Eu2+,Dy3+ composite as an efficient plasmonic photocatalyst for round-the-clock environmental purification and hydrogen evolution[J]. Journal of Materials Chemistry A, 7, 19173-19186(2019).

    [54] Li H H, Wang Y H. Photocatalysis enhancement of CaAl2O4∶Eu2+,Nd3+@TiO2 composite powders[J]. Research on Chemical Intermediates, 36, 51-59(2010).

    [55] Sacco O, Vaiano V, Han C et al. Long afterglow green phosphors functionalized with Fe-N doped TiO2 for the photocatalytic removal of emerging contaminants[J]. Chemical Engineering Transactions, 43, 2107-2112(2015).

    [56] Ji H M, Xie G J, Lü Y et al. A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7:Eu2+, Dy3+ long afterglow materials by sol-gel method[J]. Journal of Sol-Gel Science and Technology, 44, 133-137(2007).

    [57] Li Y Q, Wang Y H, Xu X H et al. Effects of non-stoichiometry on crystallinity, photoluminescence and afterglow properties of Sr2MgSi2O7∶Eu2+, Dy3+ phosphors[J]. Journal of Luminescence, 129, 1230-1234(2009).

    [58] Xiao Z G, Luo X X, Xia W et al. Study on applications of long afterglow phosphors in ceramics field[J]. Journal of the Chinese Rare Earth Society, 19, 561-565(2001).

    [59] Wan H F. The study of medium and high temperature luminescent ceramic glaze[D](2005).

    [60] Fan J, Zhou X S, Chang S Y et al. Study on Sr2MgSi2O7∶Eu2+,Dy3+ nano luminescent materials used for fluorescent labeling[J]. Journal of Synthetic Crystals, 46, 2183-2189(2017).

    [61] Li N, Li Y H, Han Y Y et al. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo[J]. Analytical Chemistry, 86, 3924-3930(2014).

    [62] Li N, Diao W, Han Y et al. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo[J]. Chemistry, 20, 16488-16491(2014).

    [63] Tachibana Y, Vayssieres L, Durrant J R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics, 6, 511-518(2012).

    [64] Sivula K, van de Krol R. Semiconducting materials for photoelectrochemical energy conversion[J]. Nature Reviews Materials, 1, 1-16(2016).

    [65] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38(1972).

    [66] Li H, Yin S, Wang Y et al. Persistent fluorescence-assisted TiO2-xNy-based photocatalyst for gaseous acetaldehyde degradation[J]. Environmental Science & Technology, 46, 7741-7745(2012).

    [67] Zhou Q, Peng F P, Ni Y R et al. Long afterglow phosphor driven round-the-clock g-C3N4 photocatalyst[J]. Journal of Photochemistry and Photobiology A: Chemistry, 328, 182-188(2016).

    [68] Wu H Y, Wang Z M, Koike K et al. Hybridization of silver orthophosphate with a melilite-type phosphor for enhanced energy-harvesting photocatalysis[J]. Catalysis Science & Technology, 7, 3736-3746(2017).

    [69] Cui G, Yang X, Zhang Y et al. Round-the-clock photocatalytic hydrogen production with high efficiency by a long-afterglow material[J]. Angewandte Chemie, 58, 1340-1344(2019).

    Zhanfeng Ma, Shuo Liu, Lang Pei, Jiasong Zhong. Research Progress on Afterglow Mechanism and Application of Sr2MgSi2O7∶Eu2+,Dy3+ Long-Afterglow Phosphor[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516004
    Download Citation