• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 231408 (2020)
Tianchun Zou, Minying Chen*, He Zhu, and Yao Ou
Author Affiliations
  • College of Airworthiness, Civil Aviation University of China, Tianjin 300300, China
  • show less
    DOI: 10.3788/LOP57.231408 Cite this Article Set citation alerts
    Tianchun Zou, Minying Chen, He Zhu, Yao Ou. Research on High Cycle Fatigue Performance of AlSi7Mg Alloy Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231408 Copy Citation Text show less
    References

    [1] Zou T C, Ou Y, Zhu H et al. Effect of heat treatment on microstructure and tensile properties of AlSi7Mg alloy fabricated by selective laser melting[J]. Hot Working Technology, 48, 154-157(2019).

    [2] Liu Y L, Yi J H, Yang D L et al. Effects of solution temperature on microstructure and high cycle fatigue performance of 7075 aluminum alloy[J]. Heat Treatment of Metals, 41, 1-7(2016).

    [3] Yuan X B, Wei Q S, Wen S F et al. Research on selective laser melting AlSi10Mg alloy powder[J]. Hot Working Technology, 43, 91-94(2014).

    [4] Zhang S, Gui R Z, Wei Q S et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 49, 21-27(2013).

    [5] Ma T, Liu T T, Liao W H et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting[J]. Chinese Journal of Lasers, 45, 1102012(2018).

    [6] Zou T C, Ou Y, Qin J X. Research development of additive manufacturing of high-strength aluminium alloy[J]. Hot Working Technology, 47, 34-37(2018).

    [7] Yang Q, Lu Z L, Huang F X et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 507, 26-31(2016).

    [8] Chen D, Zhang Q X, Ning R et al. The behavior of fatigue crack propagation of powder metallurgy aluminium alloys[J]. Materials Review, 28, 10-14(2014).

    [9] Yang J, Liu Y D, Shi W T et al. Process optimization and performance investigation in selective laser melting of large layer-thickness 316L powder[J]. Laser & Optoelectronics Progress, 56, 011401(2019).

    [10] Ma Y Y, Liu Y D, Shi W T et al. Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder[J]. Laser & Optoelectronics Progress, 56, 101403(2019).

    [11] Pan A Q, Zhang H, Wang Z M. Process parameters and microstructure of Ni-based single crystal superalloy processed by selective laser melting[J]. Chinese Journal of Lasers, 46, 1102007(2019).

    [12] Tian J, Wei Q S, Zhu W Z et al. Selective laser melting process and mechanical properties of Cu-Al-Ni-Ti alloy[J]. Chinese Journal of Lasers, 46, 0302001(2019).

    [13] Hou W, Chen J, Chu S L et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 45, 0702003(2018).

    [14] Brandl E, Heckenberger U, Holzinger V et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 34, 159-169(2012).

    [15] Aboulkhair N T, Maskery I, Tuck C et al. Improving the fatigue behaviour of a selectively laser melted aluminium alloy: influence of heat treatment and surface quality[J]. Materials & Design, 104, 174-182(2016).

    [16] Uzan N E, Shneck R, Yeheskel O et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science and Engineering: A, 704, 229-237(2017).

    [17] Leon A, Aghion E. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM)[J]. Materials Characterization, 131, 188-194(2017).

    [18] Siddique S, Imran M, Walther F. Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy[J]. International Journal of Fatigue, 94, 246-254(2017).

    [19] Ngnekou J N D, Nadot Y, Henaff G et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J]. International Journal of Fatigue, 119, 160-172(2019).

    [20] Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting[J]. Materials & Design, 89, 1294-1301(2016).

    [21] Munizlerma J A, Nommeotsnomm A, Waters K E et al. A comprehensive approach to powder feedstock characterization for powder bed fusion additive manufacturing: a case study on AlSi7Mg[J]. Materials, 11, 2386(2018).

    [22] Zhong Q P. Some empirical formulas for estimating metal fatigue performance[J]. Ordnance Material Science and Engineering, 39-47(1985).

    [23] Wu W H, Yang Y Q, Mao G S[J]. Morphology analysis of molten pools lapping and accumulation in selective laser melting of 316L stainless steel Manufacturing Technology & Machine Tool, 2014, 46-49.

    [24] Wang M, Song B, Wei Q S et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy[J]. Materials Science and Engineering: A, 739, 463-472(2019).

    [25] Takata N, Kodaira H, Sekizawa K et al. Change in microstructure of selectively laser melted AlSi10Mg alloy with heat treatments[J]. Materials Science and Engineering: A, 704, 218-228(2017).

    [26] Thijs L, Kempen K, Kruth J P et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 61, 1809-1819(2013).

    [27] Pan F S, Zhang D F[M]. Aluminum alloy and application, 265-275(2006).

    [28] Zhang C C, Zhu H H, Liao H L et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 116, 513-522(2018).

    [29] Yan Q, Song B, Shi Y S. Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. Journal of Materials Science & Technology, 41, 199-208(2020).

    [30] Chen W Z. A comparative study on performance of aluminum alloy parts with selective laser melting and casting[D]. Wuhan: Huazhong University of Science and Technology, 19-25(2017).

    [31] Zhang W, Lu Q H, Ren X H et al. Fatigue properties and fracture behavior of 5052 aluminium alloys welded by high frequency micro-vibration laser[J]. Chinese Journal of Lasers, 46, 0302012(2019).

    [32] Qiao Y X, Zhao L, Xu L Y et al. Fatigue property and fracture mechanism of 5754 aluminium alloys GTAW and FSW joints[J]. Materials for Mechanical Engineering, 43, 30-34,40(2019).

    Tianchun Zou, Minying Chen, He Zhu, Yao Ou. Research on High Cycle Fatigue Performance of AlSi7Mg Alloy Fabricated by Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231408
    Download Citation