• Frontiers of Optoelectronics
  • Vol. 11, Issue 4, 400 (2018)
Yanli ZHAO1、*, Junjie TU1, Jingjing XIANG2, Ke WEN1, Jing XU1, Yang TIAN1, Qiang LI1, Yuchong TIAN1, Runqi WANG1, Wenyang LI1, Mingwei GUO1, Zhifeng LIU3, and Qi TANG3
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Sichuan Branch, China Unicom Network Communications Co., Ltd, Chengdu 610041, China
  • 3Wuhan Aroptics-Tech Co., LTD, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-018-0851-8 Cite this Article
    Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Frontiers of Optoelectronics, 2018, 11(4): 400 Copy Citation Text show less
    References

    [1] Campbell J C. Recent advances in telecommunications avalanche photodiodes. Journal of Lightwave Technology, 2007, 25(1): 109–121

    [2] Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Optics Express, 2009, 17(8): 6275–6282

    [3] Wu G, Jian Y, Wu E, Zeng H. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Optics Express, 2009, 17(21): 18782–18787

    [4] Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Optics Express, 2006, 14(21): 10043–10049

    [5] Dixon A R, Dynes J F, Yuan Z L, Sharpe AW, Bennett A J, Shields A J. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters, 2009, 94(23): 231113-1–231113-3

    [6] Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J. Experimental quantum cryptography. Journal of Cryptology, 1992, 5(1): 3–28

    [7] Zhang J, Itzler M A, Zbinden H,Pan J W.Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science and Applications, 2015, 4 (5): e286-1–e286-13

    [8] Hyun K S, Park C Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with p-i-n multiplication layer structure. Journal of Applied Physics, 1997, 81(2): 974–984

    [9] Bandyopadhyay A, Jamal Deen M, Tarof L E, Clark W. A simplified approach to time-domain modeling of avalanche photodiodes. IEEE Journal of Quantum Electronics, 1998, 34(4): 691–699

    [10] Xie J, Ng J S, Tan C H. An InGaAs/AlAsSb avalanche photodiode with a small temperature coefficient of breakdown. IEEE Photonics Journal, 2013, 5(4): 6800706

    [11] Tan L J J, Ong D S G, Ng J S, Tan C H, Jones S K, Qian Y, David J P R. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE Journal of Quantum Electronics, 2010, 46(8): 1153–1157

    [12] Xiang J, Zhao Y. Comparison of waveguide avalanche photodiodes with InP and InAlAs multiplication layer for 25 Gb/s operation. Optical Engineering (Redondo Beach, Calif.), 2014, 53(4): 046106-1–046106-7

    [13] Zhao Y, He S. Multiplication characteristics of InP/InGaAs avalanche photodiodes with a thicker charge layer. Optics Communications, 2006, 265(2): 476–480

    [14] El-Batawy Y M, Deen M J. Analysis and circuit modeling of waveguide-separated absorption charge multiplication-avalanche photodetector (WG-SACM-APD). IEEE Transactions on Electron Devices, 2005, 52(3): 335–344

    [15] Das N R, DeenMJ. On the frequency response of a resonant-cavityenhanced separate absorption, grading, charge, and multiplication avalanche photodiode. Journal of Applied Physics, 2002, 92(12): 7133–7145

    [16] Okuto Y, Crowell C R. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Physical Review B: Condensed Matter and Materials Physics, 1972, 6(8): 3076–3081

    [17] Chau H F, Pavlidis D. Physics based fitting and extrapolation method for measured impact ionization coefficients in III–V semiconductors. Journal of Applied Physics, 1992, 72(2): 531–538

    [18] Zhao Y, Zhang D, Qin L, Tang Q, Wu R H, Liu J, Zhang Y, Zhang H, Yuan X, Liu W. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination. Optics Express, 2011, 19(9): 8546–8556

    Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Frontiers of Optoelectronics, 2018, 11(4): 400
    Download Citation