• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20210438 (2022)
Chunguang Hu, Enci Li, Cong Zhai, Xiaoqing Gao*, Yulu Chen, and Mengdi Guo
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/IRLA20210438 Cite this Article
    Chunguang Hu, Enci Li, Cong Zhai, Xiaoqing Gao, Yulu Chen, Mengdi Guo. Progress in microspheric lens based super-resolution microscopic imaging technology with large field of view[J]. Infrared and Laser Engineering, 2022, 51(6): 20210438 Copy Citation Text show less
    References

    [1] E Abbe. Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-468(1873).

    [2] S W Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780-782(1994).

    [3] E Betzig, G H Patterson, Sougratr, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 1642, 1127344(2006).

    [4] M G L Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82-87(2000).

    [5] T W Ebbesen, H J Lezec, H F Ghaemi, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature Materials, 35-37(2010).

    [6] Zhigang Chen, T Allen, B Vadim. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique. Optics Express, 12, 1214-1220(2004).

    [7] Z Wang, W Guo, L Li, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2, 1-6(2011).

    [8] S Perrin, H Li, S Lecler, et al. Unconventional magnification behaviour in microsphere-assisted microscopy. Optics & Laser Technology, 114, 40-43(2019).

    [9] Y Duan, G Barbastathis, B Zhang. Classical imaging theory of a microlens with super-resolution. Optics Letters, 38, 2988-2990(2013).

    [10] Y Ben-Aryeh. Tunneling of evanescent waves into propagating waves. Applied Physics B, 84, 121-124(2006).

    [11] Y Ben-Aryeh. Transmission enhancement by conversion of evanescent waves into propagating waves. Applied Physics B, 91, 157-165(2008).

    [12] Y Ben-Aryeh. Superresolution observed from evanescent waves transmitted through nano-corrugated metallic films. Applied Physics B, 109, 165-170(2012).

    [13] B S Lukiyanchuk, R Paniagua-Domínguez, I Minin, et al. Refractive index less than two: photonic nanojets yesterday, today and tomorrow. Optical Materials Express, 7, 1820-1847(2017).

    [14] H Yang, R Trouillon, G Huszka, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Letters, 16, 4862-4870(2016).

    [15] A Devilez, B Stout, N Bonod, et al. Spectral analysis of three-dimensional photonic jets. Optics Express, 16, 14200-14212(2008).

    [16] S Lee, L Li, Z Wang. Optical resonances in microsphere photonic nanojets. Journal of Optics, 16, 5704(2014).

    [17] H Yang, M A M Gijs. Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures. Microelectronic Engineering, 143, 86-90(2015).

    [18] S Lecler, S Perrin, A Leong-Hoi, et al. Photonic jet lens. Scientific reports, 9, 1-8(2019).

    [19] A Darafsheh, G F Walsh, L D Negro, et al. Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 101, 388-457(2012).

    [20] A Darafsheh, N I Limberopoulos, J S Derov, et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Applied Physics Letters, 104, 061117(2014).

    [21] S Lee, L Li, Y Ben-Aryeh, et al. Overcoming the diffraction limit induced by microsphere optical nanoscopy. Journal of Optics, 15, 125710(2013).

    [22] S Lee, L Li, Z Wang, et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects. Applied Optics, 52, 7265-7270(2013).

    [23] L Li, W Guo, Y Yan, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light: Science & Applications, 2, e104(2013).

    [24] X Hao, C Kuang, X Liu, et al. Microsphere based microscope with optical super-resolution capability. Applied Physics Letters, 99, 203102(2011).

    [25] Y Zhou, Y Tang, Y He, et al. Effects of immersion depth on super-resolution properties of index-different microsphere-assisted nanoimaging. Applied Physics Express, 11, 032501(2018).

    [26] Y Zhou, Y Tang, Q Deng, et al. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy. Applied Physics Express, 10, 082501(2017).

    [27] J Zhou, B Zeng, S Bi, et al. Enhanced magnification factors in super-resolution imaging using stacked dual microspheres. Journal of Optics, 22, 085605(2020).

    [28] H Luo, H Yu, Y Wen, et al. Enhanced high-quality super-resolution imaging in air using microsphere lens groups. Optics Letters, 45, 2981-2984(2020).

    [29] M Guo, Y H Ye, J Hou, et al. Imaging of sub-surface nanostructures by dielectric planer cavity coupled microsphere lens. Optics Communications, 383, 153-158(2017).

    [30] S Yang, Y Cao, Q Shi, et al. Label-free super-resolution imaging of transparent dielectric objects assembled on silver film by a microsphere-assisted microscope. The Journal of Physical Chemistry C, 123, 28353-28358(2019).

    [31] Q F Shi, S L Yang, Y R Cao, et al. Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy. Chinese Physics B, 30, 040702(2021).

    [32] L A Krivitsky, J J Wang, Z Wang, et al. Locomotion of microspheres for super-resolution imaging. Scientific Reports, 3, 1-5(2013).

    [33] S Wang, D Zhang, H Zhang, et al. Super-resolution optical microscopy based on scannable cantileverʜcombined microsphere. Microscopy Research and Technique, 78, 1128-1132(2015).

    [34] Meng K, Gao S, Zhang Y, et al. Optical superresolution imaging study based on controlling liquidimmersed microsphere[C]2018 IEEE 13th Annual International Conference on NanoMicro Engineered Molecular Systems (NEMS). IEEE, 2018: 538542.

    [35] Meng Kai. Research on microsphere lens operating system f superresolution optical imaging[D]. Suzhou: Soochow University, 2019. (in Chinese)

    [36] F Wang, L Liu, H Yu, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nature Communications, 7, 1-10(2016).

    [37] Allen K W, Farahi N, Li Y, et al. Superresolution imaging by arrays of highindex spheres embedded in transparent matrices[C]Naecon 2014IEEE National Aerospace Electronics Conference. IEEE, 2014: 5052.

    [38] K W Allen, N Farahi, Y Li, et al. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis. Annalen der Physik, 527, 513-522(2015).

    [39] J Li, W Liu, T Li, et al. Swimming microrobot optical nanoscopy. Nano Letters, 16, 6604-6609(2016).

    [40] A Ashkin. Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci, 94, 4853-4860(1997).

    [41] Xi Liu, Song Hu, Yan Tang, et al. Selecting a proper microsphere to combine optical trapping with microsphere-assisted microscopy. Applied Sciences, 10, 3127(2020).

    [42] X Liu, S Hu, Y Tang. Coated high-refractive-index barium titanate glass microspheres for optically trapped microsphere super-resolution microscopy: a simulation study. Photonics, 7, 84(2020).

    [43] Y Wen, H Yu, W Zhao, et al. Scanning super-resolution imaging in enclosed environment by laser tweezer controlled superlens. Biophysical Journal, 119, 2451-2460(2020).

    [44] Huszka G, Yang H, Gijs M A M. Dielectric microspherebased optical system f superresolution microscopy[C]2017 19th International Conference on SolidState Senss, Actuats Microsystems (TRANSDUCERS). IEEE, 2017: 20032006.

    [45] Huszka G, Gijs M A M. Custom adapter f extended fieldofview microspherebased scanning superresolution microscopy[C]2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018: 700703.

    [46] Huszka G, Krenger R, Gijs M A M. In vivo imaging with microspherebased superresolution microscopy[C]2018 International Conference on Optical MEMS Nanophotonics (OMN). IEEE, 2018: 12.

    [47] L W Chen, Zhou Y, M X Wu, et al. Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electronic Advances, 1, 4-10(2018).

    [48] B Yan, Z Wang, A L Parker, et al. Superlensing microscope objective lens. Applied Optics, 56, 3142-3147(2017).

    [49] B Yan, Y Song, X Yang, et al. Unibody microscope objective tipped with a microsphere: design, fabrication, and application in subwavelength imaging. Applied Optics, 59, 2641-2648(2020).

    [50] Yang Song, Xibin Yang, Bing Yan, et al. Super-resolution imaging system based on integrated microsphere objective lens. Acta Phys Sin, 69, 170-178(2020).

    [51] Song Yang. Design of superresolution imaging system based on integrated microsphere objective lens[D]. Shanghai: Shanghai University, 2020. (in Chinese)

    [52] G Huszka, H Yang, M A M Gijs. Microsphere-based super-resolution scanning optical microscope. Optics Express, 25, 15079-15092(2017).

    [53] G Huszka, M A M Gijs. Turning a normal microscope into a super-resolution instrument using a scanning microlens array. Scientific Reports, 8, 1-8(2018).

    [54] S Perrin, A Leong-Hoï, S Lecler, et al. Microsphere-assisted phase-shifting profilometry. Applied Optics, 56, 7249-7255(2017).

    [55] F Wang, L Liu, P Yu, et al. Three-dimensional super-resolution morphology by near-field assisted white-light interferometry. Scientific Reports, 6, 24703(2016).

    [56] P K Upputuri, M Pramanik. Microsphere-aided optical microscopy and its applications for super-resolution imaging. Optics Communications, 404, 32-41(2017).

    [57] A Bezryadina, J Li, J Zhao, et al. Localized plasmonic structured illumination microscopy with an optically trapped microlens. Nanoscale, 9, 14907-14912(2017).

    [58] H Yang, N Moullan, J Auwerx, et al. Superʜresolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712-1718(2014).

    [59] Y Wen, H Yu, W Zhao, et al. Photonic nanojet sub-diffraction nano-fabrication with in situ super-resolution imaging. IEEE Transactions on Nanotechnology, 18, 226-233(2019).

    [60] Y Li, X Liu, B Li. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light: Science & Applications, 8, 61(2019).

    Chunguang Hu, Enci Li, Cong Zhai, Xiaoqing Gao, Yulu Chen, Mengdi Guo. Progress in microspheric lens based super-resolution microscopic imaging technology with large field of view[J]. Infrared and Laser Engineering, 2022, 51(6): 20210438
    Download Citation