• Photonic Sensors
  • Vol. 12, Issue 2, 164 (2022)
Hai LIU, Benlei ZHAO, Xu ZHANG, Hancheng ZHANG, Bo WU, and Shoufeng TANG*
Author Affiliations
  • School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
  • show less
    DOI: 10.1007/s13320-021-0634-5 Cite this Article
    Hai LIU, Benlei ZHAO, Xu ZHANG, Hancheng ZHANG, Bo WU, Shoufeng TANG. High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure[J]. Photonic Sensors, 2022, 12(2): 164 Copy Citation Text show less
    References

    [1] C. Liu, L. Yang, W. Su, F. Wang, T. Sun, Q. Liu, et al., “Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel,” Optics Communications, 2017, 382: 162–166.

    [2] M. Seifouri, M. A. Rouini, and S. Olyaee, “Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes,” Optical Review, 2018, 25(5): 555–562.

    [3] G. An, S. Li, W. Qin, W. Zhang, Z. Fan, and Y. Bao, “High-sensitivity refractive index sensor based on D-shaped photonic crystal fiber with rectangular lattice and nanoscale gold film,” Plasmonics, 2014, 9(6): 1355–1360.

    [4] M. Chamanzar, Z. Xia, S. Yegnanarayanan, and A. Adibi, “Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy,” Optics Express, 2013, 21(26): 32086–32098.

    [5] J. Chen, Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, et al., “Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing,” IEEE Photonics Technology Letters, 2018, 30(8): 728–731.

    [6] S. Tajik and Z. Atlasbaf, “Investigating extraordinary optical transmission and sensing performance through periodic bilayer magnetoplasmonic structure,” Journal of Applied Physics, 2020, 127(2): 023102.

    [7] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, 2006, 440(7083): 508–511.

    [8] J. C. Yang, X. Che, R. Shen, C. Wang, X. M. Li, and W. M. Chen, “High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm,” Optics Express, 2017, 25(17): 20258–20267.

    [9] J. C. Yang, L. Zhou, X. Che, J. Huang, X. M. Li, and W. M. Chen, “Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A,” Sensors And Actuators B: Chemical, 2016, 235: 717–722.

    [10] H. Liu, M. Wang, Q. Wang, H. W. Li, Y. Ding, and C. H. Zhu, “Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes,” Optical Fiber Technology, 2018, 45: 1–7.

    [11] P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, et al., “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nature Photonics, 2013, 7(2): 128–132.

    [12] S. M. Jiang, D. J. Wu, Y. Cheng, and X. J. Liu, “Manipulated localized surface plasmon resonances in silver nanoshells coated with a spherical anisotropic layer,” Chinese Physics B, 2012, 21(12): 127806.

    [13] X. Y. Lu, R. G. Wan, F. Liu, and T. Y. Zhang, “High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures,” Journal of Modern Optics, 2016, 63(2): 177–183.

    [14] X. Q. Xu, X. L. Hu, X. S. Chen, Y. S. Kang, Z. P. Zhang, K. B. Parizi, et al., “Engineering a large scale indium nanodot array for refractive index sensing,” ACS Applied Materials & Interfaces, 2016, 8(46): 31871–31877.

    [15] S. A. Wang, X. H. Sun, M. J. Ding, G. D. Peng, Y. L. Qi, Y. L. Wang, et al., “The investigation of an LSPR refractive index sensor based on periodic gold nanorings array,” Journal of Physics D: Applied Physics, 2018, 51(4): 045101.

    [16] S. B. Malani and P. Viswanath, “Impact of ordering of gold nanohole arrays on refractive index sensing,” Journal of the Optical Society of America B-Optical Physics, 2018, 35(10): 2501–2508.

    [17] T. J. Liu and J. Takahara, “Ultrabroadband absorber based on single-sized embedded metal-dielectricmetal structures and application of radiative cooling,” Optics Express, 2017, 25(12): A612–A627.

    [18] L. Lei, S. Li, H. Huang, K. Tao, and P. Xu, “Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial,” Optics Express, 2018, 26(5): 5686–5693.

    [19] M. Bazgir, M. Jalalpour, F. B. Zarrabi, and A. S. J. J. O. E. M. Arezoomand, “Design of an optical switch and sensor based on a MIM coupled waveguide using a DNA composite,” Journal of Electronic Materials, 2020, 49(3): 2173–2178.

    [20] C. T. Chou Chao, Y. F. Chou Chau, and H. P. Chiang, “Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects,” Journal of Physics D: Applied Physics, 2021, 54(11): 115301.

    [21] R. A. Mahmud, M. O. Faruque, and R. H. J. O. C. Sagor, “A highly sensitive plasmonic refractive index sensor based on triangular resonator,” Optics Communications, 2021, 483: 126634.

    [22] R. Singh, I. Al-Naib, W. Cao, and C. Rockstuhl, “The Fano resonance in symmetry broken terahertz metamaterials,” IEEE Transactions on Terahertz Science & Technology, 2013, 3(6): 820–826.

    [23] J. Q. Wang, C. Z. Fan, J. N. He, P. Ding, E. J. Liang, and Q. Z. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Optics Express, 2013, 21(2): 2236–2244.

    [24] H. Liu, C. Chen, Y. Zhang, B. Bai, and S. Tang, “A high-sensitivity methane sensor with localized surface plasmon resonance behavior in an improved hexagonal gold nanoring array,” Sensors, 2019, 19(21): 4803.

    [25] S. Wang, X. H. Sun, W. Y. Li, W. Liu, L. Jiang, and J. Han, “Fabrication of photonic quasicrystalline structures in the sub-micrometer scale,” Superlattices and Microstructures, 2016, 93: 122–127.

    [26] B. F. Chen, C. S. Lee, and R. L. Elsberry, “On tropical cyclone size and intensity changes associated with two types of long-lasting rainbands in monsoonal environments,” Geophysical Research Letters, 2014, 41(7): 2575–2581.

    [27] X. He, N. O'Keefe, Y. J. Liu, D. C. Sun, H. Uddin, A. Nirmalathas, et al., “Transmission enhancement in coaxial hole array based plasmonic color filter for image sensor applications,” IEEE Photonics Journal, 2018, 10(4): 1–9.

    [28] B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, et al., “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials, 2010, 9(9): 707–715.

    [29] J. Yang, L. Zhou, J. Huang, C. Tao, X. Li, and W. Chen, “Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition,” Sensors & Actuators B: Chemical, 2015, 207: 477–480.

    [30] J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Applied Optics, 2012, 51(28): 6789– 6798.

    [31] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kll, G. W. Bryant, and G. D. A. Fj, “Optical properties of gold nanorings,” Physical Review Letters, 2003, 90(5): 057401.

    [32] N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Letters, 2010, 10(7): 2342–2348.

    Hai LIU, Benlei ZHAO, Xu ZHANG, Hancheng ZHANG, Bo WU, Shoufeng TANG. High-Sensitive Numerical Gas Detection Using LSPR Effect and Fano Resonance in a Slotted MDM Structure[J]. Photonic Sensors, 2022, 12(2): 164
    Download Citation