• Laser & Optoelectronics Progress
  • Vol. 49, Issue 10, 100001 (2012)
Yi Changshen*, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Yinsheng, Xu Tiefeng, and Nie Qiuhua
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop49.100001 Cite this Article Set citation alerts
    Yi Changshen, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Yinsheng, Xu Tiefeng, Nie Qiuhua. Research Progress of Large-Mode Area Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100001 Copy Citation Text show less
    References

    [1] Y. Jeong, J. Sahu, D. Payne et al.. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Opt. Express, 2004, 12(25): 6088~6092

    [2] J. Nilsson, D. N. Payne. High-power fiber lasers[J]. Science, 2011, 332(6032): 921~922

    [3] A. Carter, B. N. Samson, K. Tankala et al.. Damage mechanisms in components for fiber lasers and amplifiers[C]. SPIE, 2005, 5647: 561~571

    [4] J. Limpert, T. Schreiber, A. Liem et al.. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation[J]. Opt. Express, 2003, 11(22): 2982~2990

    [5] N. A. Mortensen. Effective area of photonic crystal fibers[J]. Opt. Express, 2002, 10(7): 341~348

    [6] J. C. Knight, T. A. Birks, R. F. Cregan et al.. Large mode area photonic crystal fibre[J]. Electron. Lett., 1998, 34(13): 1347~1348

    [7] J. Limpert, A. Liem, M. Reich et al.. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Opt. Express, 2004, 12(7): 1313~1319

    [8] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg et al.. Improved large-mode-area endlessly single-mode photonic crystal fibers[J]. Opt. Lett., 2003, 28(6): 393~395

    [9] P. Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358~362

    [10] Wang Wei, Hou Lantian. Present situation and future development in photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2008, 45(2): 43~58

    [11] J. Limpert, N. Deguil-Robin, I. Manek-Hnninger et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express, 2005, 13(4): 1055~1058

    [12] J. Limpert, O. Schmidt, J. Rothhardt et al.. Extended single-mode photonic crystal fiber lasers[J]. Opt. Express, 2006, 14(7): 2715~2720

    [13] L. Michaille, D. M. Taylor, C. R. Bennett et al.. Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area[J]. Opt. Lett., 2008, 33(1): 71~73

    [14] M. Hu, X. Fang, B. Liu et al.. Multicore photonic-crystal-fiber sources of ultrashort pulses[C]. CLEO/Europe, 2011. CJ9_6

    [15] Y. Huo, Peter K. Cheo. Analysis of transverse mode competition and selection in multicore fiber lasers[J]. J. Opt. Soc. Am. B, 2005, 22(11): 2345~2349

    [16] L. Dong, X. Peng, J. Li. Leakage channel optical fibers with large effective area[J]. J. Opt. Soc. Am. B, 2007, 24(8): 1689~1697

    [17] L. Fu, H. A. McKay, L. Dong. Extremely large mode area optical fibers formed by thermal stress[J]. Opt. Express, 2009, 17(14): 11782~11793

    [18] M. Napierala, T. Nasilowski, E. Beres-Pawlik et al.. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss[J]. Opt. Express, 2011, 19(23): 22628~22636

    [19] H. Ademgil, S. Haxha. Bending insensitive large mode area photonic crystal fiber[J]. Optik, 2011, 122(21): 1950~1956

    [20] D. J. J. Hu, F. Luan, P. P. Shum. All-glass leakage channel fibers with triangular core for achieving large mode area and low bending loss[J]. Opt. Commun., 2011, 284(7): 1811~1814

    [21] I. Abdelaziz, F. Abdel Malek, H. Ademgil et al.. Enhanced effective area photonic crystal fiber with novel air hole design[J]. J. Lightwave Technol., 2010, 28(19): 2810~2817

    [22] F. Stutzki, F. Jansen, C. Jauregui et al.. Non-hexagonal large-pitch fibers for enhanced mode discrimination[J]. Opt. Express, 2011, 19(13): 12081~12086

    [23] W. J. Wadsworth, J. C. Knight, P. St. J. Russell. Large mode area photonic crystal fibre laser[C]. CLEO, 2001, CWC1

    [24] T. Matsui, J. Zhou, K. Nakajima et al.. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss[J]. J. Lightwave Technol., 2005, 23(12): 4178~4183

    [25] S. Haxha, H. Ademgil. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Opt. Commun., 2008, 281(2): 278~286

    [26] O. Schmidt, J. Rothhardt, T. Eidam et al.. Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber[J]. Opt. Express, 2008, 16(6): 3918~3923

    [27] T. Schreiber, F. Rser, O. Schmidt et al.. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity[J]. Opt. Express, 2005, 13(19): 7621~7630

    [28] M. Napierala, T. Nasilowski, E. Bere-Pawlik et al.. Extremely large-mode-area photonic crystal fibre with low bending loss[J]. Opt. Express, 2010, 18(15): 15408~15418

    [29] N. Florous, K. Saitoh, M. Koshiba. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms[J]. Opt. Express, 2006, 14(2): 901~913

    [30] G. Genty, T. Ritari, H. Ludvigsen. Supercontinuum generation in large mode-area microstructured fibers[J]. Opt. Express, 2005, 13(21): 8625~8633

    [31] W. Shin, Y. L. Lee, B.-A. Yu et al.. Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber[J]. Opt. Commun., 2010, 283(10): 2097~2101

    [32] Zhou Jun, Lou Qinghong, Zhu Jianqiang et al.. A continuous-wave 714 W fiber laser with China-made large-mode-area double-clad fiber[J]. Acta Optica Sinica, 2006, 26(7): 1119~1120

    [33] Zhang Wei, Li Yigang, Yan Peiguang et al.. Large mode area double cladding Yb3+-doped photonic crystal fiber laser[J]. J. Optoelectronics·Laser, 2005, 16(4): 418~420

    [34] Ruan Shuangchen, Yang Bing, Zhu Chunyan et al.. The research of photonic crystal fiber laser[J]. Acta Photonica Sinica, 2004, 33(1): 126~128

    [35] Liu Bowen, Hu Minglie, Song Youjian et al.. Sub-100 fs high power Yb-doped single polarization large-mode-area photonic crystal fiber laser amplifier[J]. Acta Physica Sinica, 2008, 57(11): 6921~6925

    [36] Guo Yanyan, Hou Lantian. Design of all-solid octagon photonic crystal fiber with large mode area[J]. Acta Physica Sinica, 2010, 59(6): 4036~4041

    [37] Geng Pengcheng, Hou Lantian, Han Weitao et al.. Design of large mode area Yb3+-doped seven-core photonic crystal fiber[J]. Acta Optica Sinica, 2010, 30(9): 2719~2723

    [38] Zhou Qinling, Lu Xingqiang, Zhang Guang et al.. Mode characteristics of a large mode area flattened-mode photonic crystal fiber[J]. Acta Optica Sinica, 2010, 30(5): 1497~1500

    [39] Chen Wei, Li Jinyan, Li Shiyu et al.. Design and fabrication of large mode-field wide-frequency single-mode photonic crystal fibers[J]. Study on Opt. Commun., 2006, 32(4): 57~59

    [40] Chen Wei, Li Shiyu, Wang Yanliang et al.. Design and fabrication of high numerical aperture and large mode-field ytterbium-doped photonic crystal fibers[J]. Study on Opt. Commun., 2009, 35(2): 45~46

    [41] Feng Suya, Wang Meng, Yu Chunlei et al.. 260 μm core single-mode ultra-large mode area photonic crystal fiber[J]. Chinese J. Lasers, 2012, 39(2): 0205004

    [42] X. Feng, W. H. Loh, J. C. Flanagan et al.. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications[J]. Opt. Express, 2008, 16(18): 13651~13656

    [43] A. Schülzgen, L. Li, V. L. Temyanko et al.. Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber[J]. Opt. Express, 2006, 14(16): 7087~7092

    [44] J. Troles, L. Brilland, F. Smektala et al.. Chalcogenide photonic crystal fibers for near and middle infrared applications[C]. Proceedings of the International Conference on Transparent Optical Networks, 2007, 2: 297~300

    [45] Dai Shixun, Yu Xingyan, Zhang Wei et al.. Reseach progress of chalcogenide glass photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(9): 090602

    [46] A. Shirakawa, J. Ota, M. Musha et al.. Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 μm[J]. Opt. Express, 2005, 13(4): 1221~1227

    [47] P. M. Agruzov, K. V. Dukel′skii, I. V. Il′ichev et al.. Guidance properties of few-mode large-mode-area microstructured fibres[J]. Quant. Electron., 2010, 40(3): 254~258

    [48] William S. Wong, X. Peng, Joseph M. McLaughlin et al.. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Opt. Lett., 2005, 30(21): 2855~2857

    [49] M. Y. Chen, Y. K. Zhang. Bend insensitive design of large-mode-area microstructured optical fibers[J]. J. Lightwave Technol., 2011, 29(15): 2216~2222

    [50] W. J. Wadsworth, J. C. Knight, W. H. Reeves et al.. Yb3+ doped photonic crystal fibre laser[J]. Electron. Lett., 2000, 36(17): 1452~1454

    [51] J. Limpert, T. Schreiber, S. Nolte et al.. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Opt. Express, 2003, 11(7): 818~823

    [52] G. Bonati, H. Voelckel, T. Gabler et al.. 1.53 kW from a single Yb-doped photonic crystal fiber laser[R]. Photonics Conf. West, San Jose, CA, 2005, Session 5709-2a

    [53] K.-P. Hansen, C. B. Olausson, J. Broeng et al.. Airclad fiber laser technology[C]. SPIE, 2008, 6873: 687307

    [54] H. Lim, F. Ilday, F. Wise. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control[J]. Opt. Express, 2002, 10(25): 1497~1502

    [55] Song Youjian, Hu Minglie, Zhang Chi et al.. High power large-mode-area photonic crystal fiber femtosecond laser[J]. Chin. Sci. Bull., 2008, 53(13): 1511~1515

    [56] C. Zhang, Y. Zhang, M. Hu et al.. Wavelength tunable, high energy femtosecond laser pulses directly generated from large-mode-area photonic crystal fiber[J]. Opt. Commun., 2012, 285(10-11): 2715~2718

    CLP Journals

    [1]  Abuduresuli, Palihati, Dilixiati. Research on Binary Solution Concentration Detection Method Based on Photonic Band Gap Measurement[J]. Laser & Optoelectronics Progress, 2015, 52(6): 61603

    [2] Sha Jianbo, Gao Kan, Dong Xiaopeng. Investigation of the Power Transmission Characteristics of Fundamental Mode of Large-Core Fiber and Their Relation with the Type of Refractive Index Profile[J]. Laser & Optoelectronics Progress, 2013, 50(3): 30601

    [3]  A.Abuduresuli, A.Pazilaiti, A.Abuduwaili. Research on the Binary Solution Concentration Detection Based on Photonic Crystal Theory[J]. Laser & Optoelectronics Progress, 2015, 52(1): 11203

    [4] Pazilaiti Abudureyimu, Abuduresuli Abudurexiti. Simulation of Two-Dimensional Photonic Crystal Band Gap in Concentration Measurement[J]. Laser & Optoelectronics Progress, 2013, 50(6): 62302

    [5] Liu Shuang, Chen Danping. Recent Progress on Fabrication Technique of Rare Earth Doped Silica Fiber Preform[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110001

    [6] Zhang Yin, Chen Mingyang, Zhang Yongkang. Investigation of a Novel Large-Mode-Area Photonic Crystal Fiber Transmission System and Its Transmission Characteristics[J]. Chinese Journal of Lasers, 2012, 39(12): 1205001

    [7] Yin Dongmei, Dai Shixun, Wang Xunsi, Xu Yinsheng, Zhang Peiqing, Lin Changgui, Shen Xiang. Research Progress of Infrared Chalcogenide Glass Fibers in Sensing Fields[J]. Laser & Optoelectronics Progress, 2013, 50(2): 20010

    Yi Changshen, Zhang Peiqing, Dai Shixun, Wang Xunsi, Xu Yinsheng, Xu Tiefeng, Nie Qiuhua. Research Progress of Large-Mode Area Photonic Crystal Fibers[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100001
    Download Citation