• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 5, 647 (2021)
Zi-Xian WU1, Cheng GUO1、*, Xiao-Zhu WEN1, Xu-Bo SONG2, Shi-Xiong LIANG2, Guo-Dong GU2, Li-Sen ZHANG2, Yuan-Jie LYU2, An-Xue ZHANG1, and Zhi-Hong FENG2、*
Author Affiliations
  • 1School of Electronic Science and Engineering,Xi'an Jiaotong University,Xi'an 710049,China
  • 2Hebei Semiconductor Cooperation,China Electronics Technology Group Corporation,Shijiazhuang 050051,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.05.011 Cite this Article
    Zi-Xian WU, Cheng GUO, Xiao-Zhu WEN, Xu-Bo SONG, Shi-Xiong LIANG, Guo-Dong GU, Li-Sen ZHANG, Yuan-Jie LYU, An-Xue ZHANG, Zhi-Hong FENG. Design of high power tripler based on on-chip schottky diodes[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 647 Copy Citation Text show less
    References

    [1] B Cheng, Z Cui, B Lu et al. 340-GHz 3-D Imaging Radar With 4Tx-16Rx MIMO Array. IEEE Transactions on Terahertz Science and Technology, 8, 509-519(2018).

    [2] J Grajal, G Rubio-Cidre, A Badolato et al. Compact Radar Front-End for an Imaging Radar at 300 GHz. IEEE Transactions on Terahertz Science and Technology, 7, 268-273(2017).

    [3] H-J Song, T Nagatsuma. Present and Future of Terahertz Communications. IEEE Transactions on Terahertz Science and Technology, 1, 256-263(2011).

    [4] C Wang, C Lin, Q Chen et al. A 10-Gbit/s Wireless Communication Link Using 16-QAM Modulation in 140-GHz Band. IEEE Transactions on Microwave Theory and Techniques, 61, 2737-2746(2013).

    [5] J V Siles. Design and Optimization of frequency multipliers and mixers at millimeter and submillimeter-wave bands(2008).

    [6] K B Cooper, R Rodriguez Monje, L Millan et al. Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz. IEEE Geoscience and Remote Sensing Letters, 15, 163-167(2018).

    [7] K B Cooper, R Rodriguez Monje, L Millan et al. Atmospheric Humidity Sounding Using Differential Absorption Radar Near 183 GHz. IEEE Geoscience and Remote Sensing Letters, 15, 163-167(2018).

    [8] B Zhang, D Ji, D Fang et al. A Novel 220-GHz GaN Diode On-Chip Tripler With High Driven Power. IEEE Electron Device Letters, 40, 780-783(2019).

    [9] J Schellenberg, B Kim, T Phan. W-band, broadband 2W GaN MMIC, 1-4(2013).

    [10] C Lee, J Ward, R Lin et al. A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multipliers, 957-960(2009).

    [11] O Cojocari, M Hoefle, D Moro-Melgar et al. European Schottky-Diode Based Receiver Technology, 1-2(2019).

    [12] C Guo, Y Dhayalan, X Shang et al. A 135–150-GHz Frequency Tripler Using SU-8 Micromachined WR-5 Waveguides. IEEE Transactions on Microwave Theory and Techniques, 68, 1035-1044(2020).

    [13] J V Siles, E Schlecht, R Lin et al. High-efficiency planar Schottky diode based submillimeter-wave frequency multipliers optimized for high-power operation, 1-1(2015).

    [14] Y Yang, B Zhang, Y Wang et al. Development of High Power 220 GHz Frequency Triplers Based on Schottky Diodes. IEEE Access, 8, 74401-74412(2020).

    [15] A Maestrini, J S Ward, C Tripon-Canseliet et al. In-Phase Power-Combined Frequency Triplers at 300 GHz. IEEE Microwave and Wireless Components Letters, 18, 218-220(2008).

    [16] A Maestrini, J S Ward, J J Gill et al. A Frequency-Multiplied Source With More Than 1 mW of Power Across the 840–900-GHz Band. IEEE Transactions on Microwave Theory and Techniques, 58, 1925-1932(2010).

    [17] J V Siles, G Chattopadhyay, C Lee et al. On-chip power-combining for high-power Schottky diode based frequency multipliers: US Patent.

    [18] J V Siles, K B Cooper, C Lee et al. A New Generation of Room-Temperature Frequency-Multiplied Sources With up to 10× Higher Output Power in the 160-GHz–1.6-THz Range. IEEE Transactions on Terahertz Science and Technology, 8, 596-604(2018).

    [19] J M Manley, H E Rowe. Some General Properties of Nonlinear Elements-Part I. General Energy Relations. Proceedings of the IRE, 44, 904-913(1956).

    [20] C. H. Page. Frequency conversion with positive nonlinear resistors. Journal of Research of the National Bureau of Standards, 46, 179-182(1956).

    [21] S Liang, X Song, L Zhang et al. A 177–183 GHz High-Power GaN-Based Frequency Doubler With Over 200 mW Output Power. IEEE Electron Device Letters, 41, 669-672(2020).

    [22] J Meng, D H Zhang, C F Yao et al. Design of a 225 Ghz High Output Power Tripler Based on Unbalanced Structure. Progress In Electromagnetics Research C, 56, 101-108(2015).

    [23] L Yuan, I Mehdi, A Maestrini et al. A Broadband 900-GHz Silicon Micromachined Two-Anode Frequency Tripler. IEEE Transactions on Microwave Theory and Techniques, 59, 1673-1681(2011).

    [24] C Wu, Y Zhang, M Long et al. Design of a 110 GHz broadband frequency tripler using planar varistor Schottky diodes, 1-3(2019).

    [25] M Hrobak, M Sterns, M Schramm et al. Design and Fabrication of Broadband Hybrid GaAs Schottky Diode Frequency Multipliers. IEEE Transactions on Microwave Theory and Techniques, 61, 4442-4460(2013).

    [26] J V Siles, C Lee, R Lin et al. A High-Power 105–120 GHz Broadband On-Chip Power-Combined Frequency Tripler. IEEE Microwave and Wireless Components Letters, 25, 157-159(2015).

    [27] Y Zhang, W Zhong, T Ren et al. A 220 GHz frequency tripler based on 3D electromagnetic model of the schottky diode and the field-circuit co-simulation method. Microwave and Optical Technology Letters, 58, 1647-1651(2016).

    CLP Journals

    [1] XU Senfeng, SONG Xubo, GU Guodong, LIANG Shixiong, XU Jing, ZHOU Xingye, ZHANG Lisen, HAO Xiaolin, LIN Yong, FENG Zhihong. Design of 220 GHz frequency doubler MMIC with multi-anode structure[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(9): 1080

    Zi-Xian WU, Cheng GUO, Xiao-Zhu WEN, Xu-Bo SONG, Shi-Xiong LIANG, Guo-Dong GU, Li-Sen ZHANG, Yuan-Jie LYU, An-Xue ZHANG, Zhi-Hong FENG. Design of high power tripler based on on-chip schottky diodes[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 647
    Download Citation