• Photonics Research
  • Vol. 10, Issue 9, 2115 (2022)
Xuan Mao1、†, Hong Yang1、†, Dan Long1, Min Wang2、6、*, Peng-Yu Wen1, Yun-Qi Hu1, Bo-Yang Wang1, Gui-Qin Li1、3, Jian-Cun Gao1、3, and Gui-Lu Long1、2、3、4、5、7、*
Author Affiliations
  • 1Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
  • 2Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • 3Frontier Science Center for Quantum Information, Beijing 100084, China
  • 4Beijing National Research Center for Information Science and Technology, Beijing 100084, China
  • 5School of Information, Tsinghua University, Beijing 100084, China
  • 6e-mail: wangmin@baqis.ac.cn
  • 7e-mail: gllong@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.463775 Cite this Article Set citation alerts
    Xuan Mao, Hong Yang, Dan Long, Min Wang, Peng-Yu Wen, Yun-Qi Hu, Bo-Yang Wang, Gui-Qin Li, Jian-Cun Gao, Gui-Lu Long. Experimental demonstration of mode-matching and Sagnac effect in a millimeter-scale wedged resonator gyroscope[J]. Photonics Research, 2022, 10(9): 2115 Copy Citation Text show less
    References

    [1] G.-Q. Qin, R.-R. Xie, H. Zhang, Y.-Q. Hu, M. Wang, G.-Q. Li, H. Xu, F. Lei, D. Ruan, G.-L. Long. Experimental realization of sensitivity enhancement and suppression with exceptional surfaces. Laser Photon. Rev., 15, 2000569(2021).

    [2] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, C. Erven. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238-242(2020).

    [3] F.-X. Wang, W. Wang, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang, W. Zhao, Z.-F. Han, G.-C. Guo, W. Chen. Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon. Rev., 14, 1900190(2020).

    [4] M. Wang, R. Wu, J. Lin, J. Zhang, Z. Fang, Z. Chai, Y. Cheng. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator. Quantum Eng., 1, e9(2019).

    [5] S. Stringari. Superfluid gyroscope with cold atomic gases. Phys. Rev. Lett., 86, 4725-4728(2001).

    [6] I. Dutta, D. Savoie, B. Fang, B. Venon, C. G. Alzar, R. Geiger, A. Landragin. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys. Rev. Lett., 116, 183003(2016).

    [7] S. Davuluri, K. Li, Y. Li. Gyroscope with two-dimensional optomechanical mirror. New J. Phys., 19, 113004(2017).

    [8] X. Mao, G.-Q. Qin, H. Yang, H. Zhang, M. Wang, G.-L. Long. Enhanced sensitivity of optical gyroscope in a mechanical parity-time-symmetric system based on exceptional point. New J. Phys., 22, 093009(2020).

    [9] S. A. Haine. Mean-field dynamics and fisher information in matter wave interferometry. Phys. Rev. Lett., 116, 230404(2016).

    [10] M. O. Scully, J. P. Dowling. Quantum-noise limits to matter-wave interferometry. Phys. Rev. A, 48, 3186(1993).

    [11] H. Chang, L. Xue, W. Qin, G. Yuan, W. Yuan. An integrated MEMS gyroscope array with higher accuracy output. Sensors, 8, 2886-2899(2008).

    [12] S. E. Alper, T. Akin. A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate. J. Microelectromech. Syst., 14, 707-717(2005).

    [13] T. Kornack, R. Ghosh, M. V. Romalis. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett., 95, 230801(2005).

    [14] J.-C. Jaskula, K. Saha, A. Ajoy, D. J. Twitchen, M. Markham, P. Cappellaro. Cross-sensor feedback stabilization of an emulated quantum spin gyroscope. Phys. Rev. Appl., 11, 054010(2019).

    [15] A. Wood, E. Lilette, Y. Fein, V. Perunicic, L. Hollenberg, R. Scholten, A. Martin. Magnetic pseudo-fields in a rotating electron–nuclear spin system. Nat. Phys., 13, 1070-1073(2017).

    [16] E. J. Post. Sagnac effect. Rev. Mod. Phys., 39, 475-493(1967).

    [17] X. Jin, Y. Lin, Y. Lu, H. Ma, Z. Jin. Short fiber resonant optic gyroscope using the high-frequency Pound–Drever–Hall technique. Appl. Opt., 57, 5789-5793(2018).

    [18] S. Maayani, R. Dahan, Y. Kligerman, E. Moses, A. U. Hassan, H. Jing, F. Nori, D. N. Christodoulides, T. Carmon. Flying couplers above spinning resonators generate irreversible refraction. Nature, 558, 569-572(2018).

    [19] W. Liang, V. S. Ilchenko, A. A. Savchenkov, E. Dale, D. Eliyahu, A. B. Matsko, L. Maleki. Resonant microphotonic gyroscope. Optica, 4, 114-117(2017).

    [20] A. B. Matsko, W. Liang, A. A. Savchenkov, V. S. Ilchenko, L. Maleki. Fundamental limitations of sensitivity of whispering gallery mode gyroscopes. Phys. Lett. A, 382, 2289-2295(2018).

    [21] J. Zhang, H. Ma, H. Li, Z. Jin. Single-polarization fiber-pigtailed high-finesse silica waveguide ring resonator for a resonant micro-optic gyroscope. Opt. Lett., 42, 3658-3661(2017).

    [22] J. Wang, L. Feng, Y. Tang, Y. Zhi. Resonator integrated optic gyro employing trapezoidal phase modulation technique. Opt. Lett., 40, 155-158(2015).

    [23] T. Tian, Z. Wang, L. Song. Rotation sensing in two coupled whispering-gallery-mode resonators with loss and gain. Phys. Rev. A, 100, 043810(2019).

    [24] L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinówko, J. Kowalski. AFORS autonomous fibre-optic rotational seismograph: design and application. Acta Geophys., 59, 578-596(2011).

    [25] A. Sokolov, A. Krasnov, L. Starosel’tsev, A. Dzyuba. Development of a gyro stabilization system with fiber-optic gyroscopes for an air-sea gravimeter. Gyrosc. Navig., 6, 338-343(2015).

    [26] M. Wang, Y.-Z. Wang, X.-S. Xu, Y.-Q. Hu, G.-L. Long. Characterization of microresonator-geometry-deformation for cavity optomechanics. Opt. Express, 27, 63-73(2019).

    [27] X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, H. Wang. Chip-based silica microspheres for cavity optomechanics. Opt. Express, 23, 27260-27265(2015).

    [28] K. Wang, Y.-P. Gao, R. Jiao, C. Wang, H. Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 17, 42201(2022).

    [29] X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y.-F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [30] X.-Y. Lü, H. Jing, J.-Y. Ma, Y. Wu. PT-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett., 114, 253601(2015).

    [31] N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, Q. Song. Far-field single nanoparticle detection and sizing. Optica, 4, 1151-1156(2017).

    [32] X.-S. Xu, H. Zhang, X.-Y. Kong, M. Wang, G.-L. Long. Frequency-tuning-induced state transfer in optical microcavities. Photon. Res., 8, 490-496(2020).

    [33] R. Duggan, J. Del Pino, E. Verhagen, A. Alù. Optomechanically induced birefringence and optomechanically induced Faraday effect. Phys. Rev. Lett., 123, 023602(2019).

    [34] X. Mao, G.-Q. Qin, H. Yang, Z. Wang, M. Wang, G.-Q. Li, P. Xue, G.-L. Long. Tunable partial polarization beam splitter and optomechanically induced Faraday effect. Phys. Rev. A, 105, 033526(2022).

    [35] Y.-Q. Hu, X. Mao, H. Yang, M. Wang, G.-Q. Qin, G.-L. Long. Demonstration of Yb3+-doped and Er3+/Yb3+-codoped on-chip microsphere lasers. Opt. Express, 29, 25663-25674(2021).

    [36] J.-Y. Liang, M. Wang, D. Ruan, G.-L. Long. Low-loss and high-resolution mechanical mode tuning in microspheres. Opt. Lett., 46, 1592-1595(2021).

    [37] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [38] G.-Q. Qin, M. Wang, J.-W. Wen, D. Ruan, G.-L. Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction. Photon. Res., 7, 1440-1446(2019).

    [39] T. Ioppolo, M. V. Ötügen. Pressure tuning of whispering gallery mode resonators. J. Opt. Soc. Am. B, 24, 2721-2726(2007).

    [40] Y. L. Li, P. Barker. Characterization and testing of a micro-g whispering gallery mode optomechanical accelerometer. J. Lightwave Technol., 36, 3919-3926(2018).

    [41] Y.-H. Lai, M.-G. Suh, Y.-K. Lu, B. Shen, Q.-F. Yang, H. Wang, J. Li, S. H. Lee, K. Y. Yang, K. Vahala. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photonics, 14, 345-349(2020).

    [42] H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, K. Vahala. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 11, 1(2020).

    [43] J. Li, M.-G. Suh, K. Vahala. Microresonator Brillouin gyroscope. Optica, 4, 346-348(2017).

    [44] P. An, Y. Zheng, S. Yan, C. Xue, W. Wang, J. Liu. High-Q microsphere resonators for angular velocity sensing in gyroscopes. Appl. Phys. Lett., 106, 063504(2015).

    [45] J. C. Knight, G. Cheung, F. Jacques, T. Birks. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett., 22, 1129-1131(1997).

    [46] D. Farnesi, F. Chiavaioli, G. Righini, S. Soria, C. Trono, P. Jorge, G. N. Conti. Long period grating-based fiber coupler to whispering gallery mode resonators. Opt. Lett., 39, 6525-6528(2014).

    [47] L. Shi, Q. Gao, Q. Wang, L. Jiang, J. Luo, T. Zhu. Two-dimensional tapered optical fiber core for whispering gallery mode excitation. IEEE Photon. Technol. Lett., 34, 235-238(2022).

    [48] T. Wang, M. Wang, Y.-Q. Hu, G.-L. Long. Optothermal control of the Raman gain enhanced ringing in microresonators. Europhys. Lett., 124, 14002(2018).

    [49] H. Tian, Y. Zhang. Rotation sensing based on the sagnac effect in the self-interference add–drop resonator. J. Lightwave Technol., 36, 1792-1797(2018).

    [50] B. E. Little, J.-P. Laine, H. A. Haus. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Technol., 17, 704-715(1999).

    [51] G. B. Malykin. The Sagnac effect: correct and incorrect explanations. Phys. Usp., 43, 1229(2000).

    [52] H. Lü, Y. Jiang, Y.-Z. Wang, H. Jing. Optomechanically induced transparency in a spinning resonator. Photon. Res., 5, 367-371(2017).

    [53] J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. T. Masselink. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt., 51, 6789-6798(2012).

    [54] N. Ravindra, J. Narayan. Optical properties of amorphous silicon and silicon dioxide. J. Appl. Phys., 60, 1139-1146(1986).

    [55] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576, 65-69(2019).

    [56] M. J. Grant, M. J. Digonnet. Enhanced rotation sensing and exceptional points in a parity–time-symmetric coupled-ring gyroscope. Opt. Lett., 45, 6538-6541(2020).

    [57] W. Li, Y. Zhou, P. Han, X. Chang, S. Jiang, A. Huang, H. Zhang, Z. Xiao. Exceptional-surface-enhanced rotation sensing with robustness in a whispering-gallery-mode microresonator. Phys. Rev. A, 104, 033505(2021).

    [58] H. Yang, X. Mao, G.-Q. Qin, M. Wang, H. Zhang, D. Ruan, G.-L. Long. Scalable higher-order exceptional surface with passive resonators. Opt. Lett., 46, 4025-4028(2021).

    [59] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [60] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [61] H. Zhang, R. Huang, S.-D. Zhang, Y. Li, C.-W. Qiu, F. Nori, H. Jing. Breaking anti-PT symmetry by spinning a resonator. Nano Lett., 20, 7594-7599(2020).

    [62] H. Qin, Y. Yin, M. Ding. Sensing and induced transparency with a synthetic anti-PT symmetric optical resonator. ACS Omega, 6, 5463-5470(2021).

    [63] J. M. Silver, L. Del Bino, M. T. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, S. Zhang, K. T. Grattan, P. Del’Haye. Nonlinear enhanced microresonator gyroscope. Optica, 8, 1219-1226(2021).

    [64] S. R. Rodriguez. Enhancing the speed and sensitivity of a nonlinear optical sensor with noise. Phys. Rev. Appl., 13, 024032(2020).

    Xuan Mao, Hong Yang, Dan Long, Min Wang, Peng-Yu Wen, Yun-Qi Hu, Bo-Yang Wang, Gui-Qin Li, Jian-Cun Gao, Gui-Lu Long. Experimental demonstration of mode-matching and Sagnac effect in a millimeter-scale wedged resonator gyroscope[J]. Photonics Research, 2022, 10(9): 2115
    Download Citation