• Chinese Journal of Lasers
  • Vol. 45, Issue 7, 0702007 (2018)
Jin Liu1,2,3,4,5, Weixi Wang1,2,3,4,5, Xu Cheng1,2,3,4,* *, and Haibo Tang1,2,3,4,5
Author Affiliations
  • 1 National Engineering Laboratory of Additive Manufacturing for Large Metallic Components,Beihang University, Beijing 100191, China
  • 2 School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 3 Research and Application Center of Laser Additive Manufacturing for Defense Industries, Beijing 100191, China
  • 4 Engineering Research Center of Ministry of Education on Laser Direct Manufacturing for Large Metallic Components,Beijing 100191, China
  • 5 Beijing Engineering Technological Research Center on Laser Direct Manufacturing for Large Critical Metallic Components, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL201845.0702007 Cite this Article Set citation alerts
    Jin Liu, Weixi Wang, Xu Cheng, Haibo Tang. Oxidation Behaviors of Ti60A Titanium Alloy Processed by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2018, 45(7): 0702007 Copy Citation Text show less
    References

    [1] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science & Engineering A, 213, 103-114(1996). http://www.sciencedirect.com/science/article/pii/0921509396102331

    [2] Wei S Y, He Y, Wang Q J et al. Development of the aero-engine heat-resisting titanium alloys in Russia[J]. Aeroengine, 31, 52-58(2005).

    [3] Xu G D, Wang F E. Development and application of high-temperature Ti-based alloys[J]. Chinese Journal of Rare Metals, 32, 774-780(2008).

    [4] Williams J. Thermo-mechanical processing of high-performance Ti alloys: Recent progress and future needs[J]. Journal of Materials Processing Technology, 117, 370-373(2001). http://www.sciencedirect.com/science/article/pii/S0924013601008032

    [5] Poorganji B, Yamaguchi M, Itsumi Y et al. Microstructure evolution during deformation of a near-α titanium alloy with different initial structures in the two-phase region[J]. Scripta Materialia, 61, 419-422(2009). http://www.sciencedirect.com/science/article/pii/S135964620900308X

    [6] Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 61, 844-879(2013). http://www.sciencedirect.com/science/article/pii/S1359645412007902

    [7] Liu Z W, Cheng X, Li J et al. Heat-processing technology for laser addictive manufacturing of 05Cr15Ni5Cu4Nb precipitation-harding stainless steels[J]. Chinese Journal of Lasers, 44, 0602010(2017).

    [8] Mitoraj M, Godlewska E, Heintz O et al. Scale composition and oxidation mechanism of the Ti-46Al-8Nb alloy in air at 700 and 800 ℃[J]. Intermetallics, 19, 39-47(2011). http://www.sciencedirect.com/science/article/pii/S0966979510003912

    [9] Copland E H, Young D J, Gleeson B. Formation of Z-Ti50Al30O20 in the sub-oxide zones of γ-TiAl-based alloys during oxidation at 1000 ℃[J]. Acta Materialia, 47, 2937-2949(1999). http://www.sciencedirect.com/science/article/pii/S135964549900169X

    [10] Gurrappa I. An oxidation model for predicting the life of titanium alloy components in gas turbine engines[J]. Journal of Alloys and Compounds, 389, 190-197(2005). http://www.sciencedirect.com/science/article/pii/S0925838804010011

    [11] Leyens C, Peters M, Kaysser W A. Influence of microstructure on oxidation behaviour of near-α titanium alloys[J]. Materials Science and Technology, 12, 213-218(1996). http://www.tandfonline.com/doi/abs/10.1179/mst.1996.12.3.213

    [12] Sai Srinadh K V, Singh V. Oxidation behaviour of the near α-titanium alloy IMI 834[J]. Bull in Material Science, 27, 347-354(2004). http://link.springer.com/article/10.1007/BF02704771

    [13] Zhang S Z, Zhou B, Liu N et al. Effects of microstructure and rare-earth constituent on the oxidation behavior of Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd titanium alloy[J]. Oxidation of Metals, 81, 373-382(2014). http://link.springer.com/article/10.1007/s11085-013-9445-4

    [14] Zhou Y, Wen S F, Song B et al. A novel titanium alloy manufactured by selective laser melting: Microstructure, high temperature oxidation resistance[J]. Materials & Design, 89, 1199-1204(2016). http://www.sciencedirect.com/science/article/pii/S0264127515306717

    [15] Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers, 36, 3204-3209(2009).

    [16] Qin L Y, Pang S, Yang G et al. Microstructure and mechanical property analysis of ZL114A aluminum alloy repaired by laser deposition[J]. Chinese Journal of Lasers, 43, 1202009(2016).

    [17] Wang H M, Zhang L Y, Li A et al. Progress on rapid solidification laser processing for advanced materials and components[J]. World Science-Technology Research & Development, 26, 27-31(2004).

    [18] Liu C M, Tian X J, Tang H B et al. Microstructural characterization of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Journal of Alloys and Compounds, 572, 17-24(2013). http://www.sciencedirect.com/science/article/pii/S0925838813008001

    [19] Zhu Y Y, Liu D, Tian X J et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 56, 445-453(2014). http://www.sciencedirect.com/science/article/pii/S0261306913010935

    [20] Wang T, Zhu Y Y, Zhang S Q et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 632, 505-513(2015). http://www.sciencedirect.com/science/article/pii/S0925838815003540

    [21] Du H L, Datta P K, Lewis D B et al. Air oxidation behaviour of Ti6Al4V alloy between 650 and 850 ℃[J]. Corrosion Science, 36, 631-42(1994). http://www.sciencedirect.com/science/article/pii/0010938X94900698

    [22] Luthra K L. Stability of protective oxide films on Ti-base alloys[J]. Oxidation of Metals, 36, 475-90(1991). http://link.springer.com/article/10.1007/BF01151593

    [23] Liu Z, Welsch G. Communication: Literature survey on diffusivities of oxygen, aluminum, and vanadium in alpha titanium, beta titanium, and in rutile[J]. Metallurgical Transactions A, 22, 946-948(1991). http://link.springer.com/article/10.1007/BF02628396