• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603005 (2019)
Zheng Shanshan1、2、*, Yang Wanqin1、2, and Situ Guohai1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603005 Cite this Article
    Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 603005 Copy Citation Text show less
    References

    [1] Wang L, Ho P P, Liu C, et al. Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr Gate[J]. Science, 1991, 253(5021): 769-771.

    [2] Anderson G E, Liu F, Alfano R R. Microscope imaging through highly scattering media[J]. Optics Letters, 1994, 19(13): 981-983.

    [3] Kang S, Jeong S, Choi W, et al. Imaging deep within a scattering medium using collective accumulation of single- scattered waves[J]. Nature Photonics, 2015, 9(4): 253-258.

    [4] Guan J, Cheng Y, Chang G. Time-domain polarization difference imaging of objects in turbid water[J]. Optics Communication, 2017, 391: 82-87.

    [5] Berrocal E, Kristensson E, Richter M, et al. Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays[J]. Optics Express, 2008, 16(22): 17870-17881.

    [6] Sudarsanam S, Mathew J, Panigrahi S, et al. Real-time imaging through strongly scattering media: seeing through turbid media, instantly[J]. Scientific Reports, 2016, 6: 25033.

    [7] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

    [8] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

    [9] Helmchen F, Denk W. Deep tissue two- photon microscopy[J]. Nature Methods, 2005, 2(12): 932-940.

    [10] Webb R H. Confocal optical microscopy [J]. Reports on Progress in Physics, 1996, 59: 427-471.

    [11] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatio temporal resolution[J]. Science, 2014, 346(6208): 1257998.

    [12] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16): 2309-2311.

    [13] Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2: 110-115.

    [14] Farrell T J, Patterson M S, Wilson B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties invivo[J]. Medical Physics, 1992, 19: 879-888.

    [15] Wang L, Jacques S L, Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues[J]. Computer Methods & Programs in Biomedicine, 1995, 47: 131-146.

    [16] Popoff S, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10): 100601.

    [17] Beenakker C W J. Random-matrix theory of quantum transport[J]. Reviews of Modern Physics, 1997, 69: 731.

    [18] Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5): 283-292.

    [19] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront shaping methods for focusing light into biological tissue[J]. Nature Photonics, 2015, 9(9): 563-571.

    [20] Vellekoop I M. Feedback-based wavefront shaping[J]. Optics Express, 2015, 23(9): 12189-12206.

    [21] Yu H, Park J, Lee K, et al. Recent advances in wavefront shaping techniques for biomedical applications[J]. Current Applied Physics, 2015, 15(5): 632-641.

    [22] Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control[J]. Reviews of Modern Physics, 2017, 89(1): 015005.

    [23] Conkey D B, Caravaca-Aguirre A M, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media[J]. Optics Express, 2012, 20(2): 1733-1740.

    [24] Cui M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011,19(4): 2989-2995.

    [25] Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation[J]. Optics Express, 2010, 18(4): 3444-3455.

    [26] Hsieh C L, Pu Y, Grange R, et al. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media[J]. Optics Express, 2010, 18(12): 12283-12290.

    [27] Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 2011, 5(3): 154-157.

    [28] Wang Y M, Judkewitz B, Dimarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communications, 2012, 3: 928.

    [29] Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation[J]. Nature Photonics, 2012, 6(10): 657-661.

    [31] Papadopoulos I N, Farahi S, Moser C, et al. Focusing and scanning light through a multimode optical fiber using digital phase conjugation[J]. Optics Express, 2012, 20(10): 10583-10590.

    [32] Papadopoulos I N, Farahi S, Moser C, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber[J]. Biomedical Optics Express, 2013, 4(2): 260.

    [34] Van Putten E G, Akbulut D, Bertolotti J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905.

    [35] Park J H, Park C, Yu H S, et al. Subwavelength light focusing using random nanoparticles[J]. Nature Photonics, 2013, 7(6): 454-458.

    [36] Park C, Park J H, Rodriguez C, et al. Full-field subwavelength imaging using a scattering superlens[J]. Physical Review Letters, 2014, 113(11): 113901.

    [37] Van Putten E G, Lagendijk A, Mosk A P. Nonimaging speckle interferometry for high-speed nanometer-scale position detection[J]. Optics Letters, 2012, 37(6): 1070-1072.

    [38] Horstmeyer R, Judkewitz B, Vellekoop I M, et al. Physical key-protected one- time pad[J]. Scientific Reports, 2013, 3: 3543.

    [39] Goorden S A, Horstmann M, Mosk A P, et al. Quantum-secure authentication of a physical unclonable key[J]. Optica, 2014, 1(6): 421-424.

    [40] Akbulut D, Huisman T J, Van Putten E G, et al. Focusing light through random photonic media by binary amplitude modulation[J]. Optics Express, 2011, 19(5): 4017-4029.

    [41] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 2008, 101(12): 120601.

    [42] Vellekoop I M, Putten E G V, Lagendijk A, et al. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1): 67-80.

    [43] Vellekoop I M, Aegerter C M. Scattered light fluorescence microscopy: imaging through turbid layers[J]. Optics Letters, 2010, 35(8): 1245-1247.

    [44] Kong F, Silverman R H, Liu L, et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 2011, 36(11): 2053-2055.

    [45] Caravaca-Aguirre A M, Conkey D B, Dove J D, et al. High contrast three- dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement[J]. Optics Express, 2013, 21(22): 26671-26676.

    [46] Lai P, Wang L, Tay J W, et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 2015, 9(2): 126-132.

    [47] Bossy E, Gigan S. Photoacoustics with coherent light[J]. Photoacoustics, 2016, 4(1): 22-35.

    [48] Yu Zhipeng, Li Huanhao, Lai Puxiang. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Science, 2017, 7(12): 1320.

    [49] Tay J W, Lai P, Suzuki Y, et al. Ultrasonically encoded wavefront shaping for focusing into random media[J]. Scientific Reports, 2014, 4: 3918.

    [50] Katz O, Small E, Bromberg Y, et al. Focusing and compression of ultrashort pulses through scattering media[J]. Nature Photonics, 2011, 5(6): 372-377.

    [51] Katz O, Small E, Guan Y, et al. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers[J]. Optica, 2014, 1(3): 170-174.

    [52] Fiolka R, Si K, Cui M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered light[J]. Optics Express, 2012, 20(15): 16532.

    [53] Jang J, Lim J, Yu H, et al. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography[J]. Optics Express, 2013, 21(3): 2890-2902.

    [54] Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material[J]. Nature Communications, 2009, 1(6): 81.

    [55] Cui M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6): 870.

    [56] Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review Letters, 2010, 104(10):100601.

    [57] Yu H, Hillman T R, Choi W, et al. Measuring large optical transmission matrices of disordered media[J]. Physical Review Letters, 2013, 111(15): 153902.

    [58] Yoon J, Lee K R, Park J, et al. Measuring optical transmission matrices by wavefront shaping[J]. Optics Express, 2015, 23(8): 10158.

    [59] Lee K R, Park Y K. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor[J]. Nature Communications, 2016, 7: 13359.

    [60] Yoonseok B, Kyeoreh L, Yongkeun P. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix[J]. Physical Review Applied, 2018, 10(2): 024053.

    [61] Chaigne T, Katz O, Boccara A C, et al. Controlling light in scattering media non-invasively using the photoacoustic transmission matrix[J]. Nature Photonics, 2013, 8(1): 58-64.

    [62] Jeong S, Lee Y R, Kang S, et al. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering[J]. Nature Photonics, 2018, 12: 277-283.

    [63] Leith E N, Upatnieks J. Holographic imagery through diffusing media[J]. Journal of the Optical Society of America, 1966, 56(4): 523.

    [64] Shen Y, Liu Y, Ma C, et al. Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6cm in thickness with digital optical phase conjugation[J]. Journal of Biomedical Optics, 2016, 21(8): 085001.

    [65] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 2012, 101(8): 81108.

    [66] Hsieh C L, Pu Y, Grange R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optics Express, 2010, 18: 20723-20731.

    [67] Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000× optical power gain[J]. Scientific Reports, 2015, 5: 8896.

    [68] Zhou E H, Ruan H, Yang C, et al. Focusing on moving targets through scattering samples[J]. Optica, 2014, 1(4): 227-232.

    [69] Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media[J]. Nature Photonics, 2014, 8(12): 931-936.

    [70] Ruan H, Tom H, Yan L, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping[J]. Optica, 2017, 4(11): 1337-1343.

    [71] Ruan H, Brake J, Robinson J E, et al. Deep tissue optical focusing and optogenetic modulation with time- reversed ultrasonically encoded light[J]. Science Advances, 2017, 3(12): 5520.

    [72] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 2008, 281(11): 3071-3080.

    [73] Yu H S, Lee K R, Park Y K. Ultrahigh enhancement of light focusing through disordered media controlled by megapixel modes[J]. Optics Express, 2017, 25(7): 8036-8047.

    [74] Yan L, Cheng M, Yuecheng S, et al. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation[J]. Optica, 2017, 4(2): 280.

    [75] Wang D, Zhou E H, Brake J, et al. Focusing through dynamic tissue with millisecond digital optical phase conjugation[J]. Optica, 2015, 2(8): 728.

    [76] Park J H, Yu Z, Lee Kyeo Re, et al, Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward in vivo applications[J]. APL Photonics, 2018, 3: 100901.

    [77] Judkewitz B, Wang Y M, Horstmeyer R, et al. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)[J]. Nature Photonics, 2013, 7(4): 300-305.

    [78] Yu Z, Huangfu J, Zhao F, et al. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media[J]. Scientific Reports, 2018, 8(1): 2927.

    [79] Jang M, Ruan H, Zhou H, et al. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation[J]. Optics Express, 2014, 22(12): 14054.

    [80] Rigden J D, Gordon E I. The granularity of scattered optical maser light[J]. SPIE Milestone Series Ms, 1997, 133: 213.

    [81] Oliver B M. Sparking spots and random diffraction[J]. Proceedings of the IEEE, 1963, 51(1): 220-221.

    [82] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11): 1145-1149.

    [83] Lim J S, Nawab H. Techniques for speckle noise removal[J]. Optical Engineering, 1981, 20(3): 472-480.

    [84] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 2016, 3(1): 71-74.

    [85] Bertolotti J. Non-invasive imaging through opaque scattering layers[J]. Nature, 2012, 491: 232-234.

    [86] Tang W, Yang J, Yi W, et al. Single-shot coherent power-spectrum imaging of objects hidden by opaque scattering media[J]. Applied Optics, 2019, 58(4): 1033-1039.

    [87] Vinu R V, Gaur C, Khare K, et al. Sparsity assisted approach for imaging from laser speckle[C]//Quantitative Phase Imaging III. International Society for Optics and Photonics, 2017, 10074: 1007409.

    [88] Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect[J]. Applied Optics, 1998, 37(27): 6495-6499.

    [89] Li G, Yang W, Li D, et al. Cyphertext-only attack on the double random-phase encryption: Experimental demonstration[J]. Optics Express, 2017, 25(8): 8690-8697.

    [90] Feng S, Kane C, Lee P A. Correlations and fluctuations of coherent wave transmission through disordered media[J]. Physical Review Letters, 1988, 61(7): 834-837.

    [91] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media[J]. Physical Review Letters, 1988, 61(20): 2328-2331.

    [92] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics, 2014, 8: 784-790.

    [93] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3: 27-29.

    [94] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21: 2758-2769.

    [95] Wu T, Katz O, Shao X. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optics Letters, 2016, 41: 5003-5006.

    [96] Singh A K, Pedrini G, Takedas M, et al. Scatter-plate microscope for lensless microscopy with diffraction limited resolution[J]. Scientific Reports, 2017, 7: 10687.

    [97] Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media[J]. Scientific Reports, 2016, 6: 33558.

    [98] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports, 2018, 8: 9614.

    [99] Mukherjee S, Vijayakumar A, Kumar M, et al. 3D imaging through scatterers with interferenceless optical system[J]. Scientific Reports, 2018, 8: 1134.

    [100] Shi Y, Liu Y, Wang J, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax[J]. Applied Physics Letters, 2017, 110: 231101.

    [101] Tang D, Sahoo S K, Tran V, et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing[J]. Applied Optics, 2018, 57(26): 7533-7538.

    [102] Li G, Yang W, Wang H, et al. Image transmission through scattering media using ptychographic iterative engine[J]. Applied Sciences, 2019, 9(5): 849.

    [103] Ando T, Horisaki R, Tanida J. Speckle-learning-based object recognition through scattering media[J]. Optics Express, 2015, 23(26): 33902-33910.

    [104] Horisaki R, Takagi R, Tanida J. Learning-based imaging through scattering media[J]. Optics Express, 2016, 24(13): 13738-13743.

    [105] HorniK K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.

    [106] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computerassisted Intervention, 2015: 234-241.

    [107] Lyu M, Wang H, Li G, et al. Learning-base lensless imaging through optically thick scattering media[J]. Advanced Photonics, 2019, 1(3): 036002.

    [108] Li S, Deng M, Lee J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7): 803-813.

    [109] Li Y, Xue Y, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J]. Optica, 2018, 5(10): 1181-1190.

    [110] Caramazza P, Boccolini A, Buschek D, et al. Neural network identifcation of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8: 11945.

    [111] Turpin A, Vishniakou I, Seelig J D. Light scattering control in transmission and reflection with neural networks[J]. Optics Express, 2018, 26(23): 30911-30929.

    Zheng Shanshan, Yang Wanqin, Situ Guohai. Application of computational optical imaging in scattering[J]. Infrared and Laser Engineering, 2019, 48(6): 603005
    Download Citation