• Infrared and Laser Engineering
  • Vol. 46, Issue 4, 404001 (2017)
Wu Qihua1、2、*, Xiong Min1, Huang Yong1, Zhang Baoshun1, and Bai Yu2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201746.0404001 Cite this Article
    Wu Qihua, Xiong Min, Huang Yong, Zhang Baoshun, Bai Yu. Antireflective silicon based microstructures for the mid- and long-wavelength infrared[J]. Infrared and Laser Engineering, 2017, 46(4): 404001 Copy Citation Text show less
    References

    [1] Raut H, Ganesh V, Nair A, et al. Anti-reflective coatings: A critical, in-depth review[J]. Energy Environ, 2011, 4(10): 3779-3804.

    [2] Chattopadhyay S, Huang Y F, Jen Y J, et al. Anti-reflective and photonic nanostructures[J]. Mater, 2010, 69(1-3): 1-35.

    [3] Fu Xiuhua, Yang Jinye, Liu Dongmei, et al. Design and preparation of anti-reflection and protective film in 8-11 μm infrared detection system[J]. Infrared and Laser Engineering, 2014, 43(12): 3889-3893. (in Chinese)

    [4] Qi Yu, Sun Ping, Feng Jimeng, et al. Anti-reflection coating of higher efficiency on Si solaode[J]. Optics and Precision Engineering, 1987, 10(3): 67-72. (in Chinese)

    [5] Peng K Q, Wang X, Lee S T. Silicon nanowire array photoelectron chemical solar cells[J]. Applied Physics Letters, 2008, 92(16): 1-3.

    [6] Zhu J, Yu Z F, G F Burkhard, et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays[J]. Nano Lett, 2008, 9(1): 279-282.

    [7] Hsu C M, Battaglia C, Pahud C, et al. High efficiency amorphous silicon solar cell on a periodic nanocone back reflector[J]. Advanced Energy Materials, 2012, 2(6): 628-633.

    [8] Liao Tongqing, Peng Lulu, Xiao Guangdong, et al. Reduce reflected light from silicon solar cells based on optical microstructure[J]. Infrared and Laser Engineering, 2015, 44 (1): 201-204. (in Chinese)

    [9] Liao Tongqing, Wei Xiaolong, Wu Sheng, et al. Reduction of reflected light from silicon solar cells through spherical optical micro/nano-structure[J]. Infrared and Laser Engineering, 2016, 45(1): 0116001. (in Chinese)

    [10] Dong Tingting, Fu Yuegang, Chen Chi, et al. Design and manufacture of columned antireflective periodic microstructures on the surface of Si substrate[J]. Infrared and Laser Engineering, 2016, 45(6): 0622002. (in Chinese)

    [11] Wang Z Y, Zhang R J, Wang S Y, et al. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays[J]. Scientific Reports, 2015, 5: 7810-7815.

    [12] Li P C, Edward T Y. Large-area omnidirectional antireflection coating on low-index materials[J]. Journal of the Optical Society of America B, 2013, 30(10): 2584-2588.

    [13] Gonzalez F L, Gordon M J. Bio-inspired, sub-wavelength surface structures for ultra-broadband, omni-directional antireflection in the mid and far IR[J]. Optics Express, 2014, 22(11): 12808-12816.

    [14] Kanamori Y, Hane K, Sai H, et al. 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask[J]. Appl Phys Lett, 2001, 78(2): 142-143.

    [15] Moharam M G, Grann E B, Pommet D A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America, 1995, 12(5): 1068-1076.

    Wu Qihua, Xiong Min, Huang Yong, Zhang Baoshun, Bai Yu. Antireflective silicon based microstructures for the mid- and long-wavelength infrared[J]. Infrared and Laser Engineering, 2017, 46(4): 404001
    Download Citation