• Photonics Research
  • Vol. 8, Issue 12, 1943 (2020)
Hongxiang Chang1, Qi Chang1, Jiachao Xi1, Tianyue Hou1, Rongtao Su1、2、*, Pengfei Ma1, Jian Wu1, Can Li1, Man Jiang1, Yanxing Ma1, and Pu Zhou1、3、*
Author Affiliations
  • 1College of Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2e-mail: surongtao@126.com
  • 3e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.409788 Cite this Article Set citation alerts
    Hongxiang Chang, Qi Chang, Jiachao Xi, Tianyue Hou, Rongtao Su, Pengfei Ma, Jian Wu, Can Li, Man Jiang, Yanxing Ma, Pu Zhou. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943 Copy Citation Text show less
    References

    [1] C. Peng, X. Liang, R. Liu, W. Li, R. Li. High-precision active synchronization control of high-power, tiled-aperture coherent beam combining. Opt. Lett., 42, 3960-3963(2017).

    [2] M. Zervas, C. Codemard. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron., 20, 219-241(2014).

    [3] T. Y. Fan. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quantum Electron., 11, 567-577(2005).

    [4] B. He, Q. Lou, J. Zhou, J. Dong, Y. Wei, D. Xue, Y. Qi, Z. Su, L. Li, F. Zhang. High power coherent beam combination from two fiber lasers. Opt. Express, 14, 2721-2726(2006).

    [5] G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammo, H. Injeyan, H. Komine, W. H. Long, M. McClellan, S. J. McNau, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, M. Wickham. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J. Sel. Top. Quantum Electron., 13, 460-472(2007).

    [6] T. Hou, D. Zhi, R. Tao, Y. Ma, P. Zhou, Z. Liu. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology. Opt. Express, 26, 14945-14958(2018).

    [7] L. Wang, L. Wang, S. Zhu. Formation of optical vortices using coherent laser beam arrays. Opt. Commun., 282, 1088-1094(2009).

    [8] M. Müller, C. Aleshire, A. Klenke, E. Haddad, F. Légaré, A. Tünnermann, J. Limpert. 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett., 45, 3083-3086(2020).

    [9] R. Su, P. Zhou, X. Wang, H. Zhang, X. Xu. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt. Lett., 37, 3978-3980(2012).

    [10] M. M. U. Ller, A. Klenke, A. Steinkopff, H. Stark, A. T. U. Nnermann, J. Limpert. 3.5 kW coherently combined ultrafast fiber laser. Opt. Lett., 43, 6037-6040(2018).

    [11] H. J. Kong, S. Park, S. Cha, J. S. E. D. M. P. W. Kim, O. Steinvall. 4  kW coherent beam combination laser using self-controlled stimulated Brillouin scattering-phase conjugation mirrors for industrial applications. Advanced Solid-State Lasers Congress, JTh2A.65(2013).

    [12] E. Shekel, Y. Vidne, B. Urbach. 16 kW single mode CW laser with dynamic beam for material processing. Proc. SPIE, 11260, 1126021(2020).

    [13] D. Kabeya, V. Kermène, M. Fabert, J. Benoist, J. Saucourt, A. Desfarges-Berthelemot, A. Barthélémy. Efficient phase-locking of 37 fiber amplifiers by phase-intensity mapping in an optimization loop. Opt. Express, 25, 13816-13821(2017).

    [14] I. Fsaifes, L. Daniault, S. Bellanger, M. Veinhard, J. Bourderionnet, C. Larat, E. Lallier, E. Durand, A. Brignon, J.-C. Chanteloup. Coherent beam combining of 61 femtosecond fiber amplifiers. Opt. Express, 28, 20152-20161(2020).

    [15] R. Su, J. Xi, H. Chang, Y. Ma, P. Ma, J. Wu, M. Jiang, P. Zhou, L. Si, X. Xu, J. Chen. Coherent combing of 60 fiber lasers using stochastic parallel gradient descent algorithm. Laser Congress 2019 (ASSL, LAC, LS&C), JW2A.1(2019).

    [16] J. Bourderionnet, C. Bellanger, J. Primot, A. Brignon. Collective coherent phase combining of 64 fibers. Opt. Express, 19, 17053-17058(2011).

    [17] Q. Du, T. Zhou, L. R. Doolittle, G. Huang, D. Li, R. Wilcox. Deterministic stabilization of eight-way 2D diffractive beam combining using pattern recognition. Opt. Lett., 44, 4554-4557(2019).

    [18] H. K. Ahn, H. J. Kong. Feasibility of cascaded multi-dithering technique for coherent addition of a large number of beam elements. Appl. Opt., 55, 4101-4108(2016).

    [19] Z. Huang, X. Tang, Y. Luo, C. Liu, J. Li, D. Zhang, X. Wang, T. Chen, M. Han. Active phase locking of thirty fiber channels using multilevel phase dithering method. Rev. Sci. Instrum., 87, 033109(2016).

    [20] C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, X. Li. Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control. Opt. Express, 21, 25045-25055(2013).

    [21] C. X. Yu, J. E. Kansky, S. E. J. Shaw, D. V. Murphy, C. Higgs. Coherent beam combining of large number of PM fibres in 2-D fibre array. Electron. Lett., 42, 1024-1025(2006).

    [22] H. Chang, J. Xi, R. Su, P. Ma, Y. Ma, P. Zhou. Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm. Chin. Opt. Lett., 18, 101403(2020).

    [23] G. D. Goodno, C.-C. Shih, J. E. Rothenberg. Perturbative analysis of coherent combining efficiency with mismatched lasers. Opt. Express, 18, 25403-25414(2010).

    [24] V. E. Leshchenko. Coherent combining efficiency in tiled and filled aperture approaches. Opt. Express, 23, 15944-15970(2015).

    [25] M. A. Vorontsov, G. W. Carhart, J. C. Ricklin. Adaptive phase-distortion correction based on parallel gradient-descent optimization. Opt. Lett., 22, 907-909(1997).

    [26] J. C. Bezdek, L. O. Hall, L. P. Clarke. Review of MR image segmentation techniques using pattern recognition. Med. Phys., 20, 1033-1048(1993).

    [27] J. Devore. Probability and Statistics: For Engineering and the Sciences(2004).

    [28] V. Jolivet, P. Bourdon, B. Bennaï, L. Lombard, D. Goular, E. Pourtal, G. Canat, Y. Jaouën, B. Moreau, O. Vasseur. Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence. IEEE J. Sel. Top. Quantum Electron., 15, 257-268(2009).

    [29] W. Wang, B. He, J. Zhou, Q. Lou, H. Xu. Study on far-field intensity distribution of fiber laser used in coherent beam combination. Acta Opt. Sin., 29, 2248-2255(2009).

    [30] F. Li, C. Geng, G. Huang, Y. Yang, X. Li. Wavefront sensing based on fiber coupling in adaptive fiber optics collimator array. Opt. Express, 27, 8943-8957(2019).

    [31] D. Zhi, Y. Ma, Z. Chen, X. Wang, P. Zhou, L. Si. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality. Opt. Lett., 41, 2217-2220(2016).

    [32] T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma. Deep-learning-based phase control method for tiled aperture coherent beam combining systems. High Power Laser Sci. Eng., 7, e59(2019).

    [33] H. Tünnermann, A. Shirakawa. Deep reinforcement learning for coherent beam combining applications. Opt. Express, 27, 24223-24230(2019).

    [34] R. Liu, C. Peng, X. Liang, R. Li. Coherent beam combination far-field measuring method based on amplitude modulation and deep learning. Chin. Opt. Lett., 18, 041402(2020).

    [35] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    [36] J. Song, Y. Li, D. Che, J. Guo, T. Wang. Coherent beam combining based on the SPGD algorithm with a momentum term. Optik, 202, 163650(2020).

    CLP Journals

    [1] Yuefang Yan, Yu Liu, Haoyu Zhang, Yue Li, Yuwei Li, Xi Feng, Donglin Yan, Jianjun Wang, Honghuan Lin, Feng Jing, Wenhui Huang, Rumao Tao. Principle and numerical demonstration of high power all-fiber coherent beam combination based on self-imaging effect in a square core fiber[J]. Photonics Research, 2022, 10(2): 444

    [2] Yang Gao, Jiali Liao, Jun Xu, Zhanrong Zhou. Sidelobe suppression for coherent beam combining with laser beams placed along a Fermat spiral[J]. Chinese Optics Letters, 2022, 20(2): 021405

    Hongxiang Chang, Qi Chang, Jiachao Xi, Tianyue Hou, Rongtao Su, Pengfei Ma, Jian Wu, Can Li, Man Jiang, Yanxing Ma, Pu Zhou. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943
    Download Citation