• Acta Optica Sinica
  • Vol. 38, Issue 7, 0701001 (2018)
Shu Li1、2, Xiaobing Sun1、*, Rufang Ti1, Honglian Huang1, Zhenting Chen1、2, and Yanli Qiao1
Author Affiliations
  • 1 Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2 University of Science and Technology of China, Hefei, Anhui 230026, China
  • show less
    DOI: 10.3788/AOS201838.0701001 Cite this Article Set citation alerts
    Shu Li, Xiaobing Sun, Rufang Ti, Honglian Huang, Zhenting Chen, Yanli Qiao. Influence of Scattering Model and Effective Particle Radius on Cirrus Cloud Optical Thickness Retrieval[J]. Acta Optica Sinica, 2018, 38(7): 0701001 Copy Citation Text show less
    References

    [1] Liou K N. Influence of cirrus clouds on weather and climate processes: a global perspective[J]. Monthly Weather Review, 114, 1167-1199(1986). http://onlinelibrary.wiley.com/resolve/reference/ADS?id=1986MWRv..114.1167L

    [2] Zhang Z. Satellite-based remote sensing of cirrus clouds: hyperspectral radiative transfer modeling, analysis of uncertainties in in-situ cloud extinction measurements and inter comparison of cirrus retrievals from A-train instruments[D]. Texas: Texas A & M University, 78-135(2009).

    [3] Zhou C, Dessler A E, Zelinka M D et al. Cirrus feedback on interannual climate fluctuations[J]. Geophysical Research Letters, 41, 9166-9173(2014). http://www.ingentaconnect.com/content/bpl/grl/2014/00000041/00000024/art00064

    [4] Houghton J T, Ding Y H, Griggs J et al[M]. Climate change 2001: the scientific basis, 349-416(2001).

    [5] Salomonson V V, Barnes W L, Maymon P W et al. MODIS: advanced facility instrument for studies of the Earth as a system[J]. IEEE Transactions on Geoscience & Remote Sensing, 27, 145-153(1989). http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/36.20292&rfr_id=trans/tk/2005/02/ttk2005020271.htm

    [6] Waquet F, Cornet C, Deuzé J L et al. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarizationmeasurements[J]. Atmospheric Measurement Techniques, 6, 991-1016(2013).

    [7] Yang W F, Hong J, Qiao Y L. Optical design of spaceborne directional polarization camera[J]. Acta Optica Sinica, 35, 0822005(2015).

    [8] Baum B A, Heymsfield A J, Yang P et al. Bulk scattering properties for the remote sensing of ice clouds. part I: microphysical data and models[J]. Journal of Applied Meteorology, 44, 1885-1895(2005).

    [9] C-Labonnote L. Brogniez G, Buriez J C, et al. Polarized light scattering by inhomogeneous hexagonal monocrystals: validation with ADEOS-POLDER measurements[J]. Journal of Geophysical Research Atmospheres, 106, 12139-12153(2001).

    [10] Yang P, Liou K N, Wyser K et al. Parameterization of the scattering and absorption properties of individual ice crystals[J]. Journal of Geophysical Research: Atmospheres, 105, 4699-4718(2000). http://onlinelibrary.wiley.com/doi/10.1029/1999JD900755/full

    [11] Yang P, Bi L, Baum B A et al. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm[J]. Journals of the Atmospheric Sciences, 70, 330-347(2013).

    [12] Baum B A, Yang P, Heymsfield A J et al. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 123-139(2014).

    [13] Mishchenko M I, Travis L D, Mackowski D W. T-matrix computations of light scattering by nonspherical particles: a review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535-575(1996). http://www.sciencedirect.com/science/article/pii/0022407396000027

    [14] Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).

    [15] Yurkin M A, Maltsev V P, Hoekstra A G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength[J]. Journal of Quantitative Spectroscopyand Radiative Transfer, 106, 546-557(2007).

    [16] Bi L, Yang P, Kattawar G W et al. Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 μm[J]. Journal of Geophysical Research Atmospheres, 114, 2191-2196(2009).

    [17] Liou K N[M]. An introduction to atmospheric radiation, 317-324(2002).

    [18] Cheng T H, Gu X F, Chen L F et al. Multi-angular polarized characteristics of cirrus clouds[J]. Acta Physica Sinica, 57, 5323-5332(2008).

    [19] Evans K F, Stephens G L. A new polarized atmospheric radiative transfer model[J]. Journal of Quantitative Spectroscopyand Radiative Transfer, 46, 413-423(1991). http://www.sciencedirect.com/science/article/pii/002240739190043P

    [20] King M D. Determination of thescaled optical thickness of clouds from reflected solar radiation measurements[J]. Journal of the Atmospheric Sciences, 44, 1734-1751(1987).

    Shu Li, Xiaobing Sun, Rufang Ti, Honglian Huang, Zhenting Chen, Yanli Qiao. Influence of Scattering Model and Effective Particle Radius on Cirrus Cloud Optical Thickness Retrieval[J]. Acta Optica Sinica, 2018, 38(7): 0701001
    Download Citation