• Laser & Optoelectronics Progress
  • Vol. 55, Issue 9, 91401 (2018)
Wan Le1, Wang Siqi2, Zhang Xiaowei1, and Jiang Yehua1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.091401 Cite this Article Set citation alerts
    Wan Le, Wang Siqi, Zhang Xiaowei, Jiang Yehua. Forming Quality of Titanium Alloys by Selective Laser Melting Based on Partition Scanning[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91401 Copy Citation Text show less
    References

    [1] Murr L E, Martinez E, Amato K N, et al. Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science[J]. Journal of Materials Research and Technology, 2012, 1(1): 42-54.

    [2] Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6): 1917-1928.

    [3] Stamp R, Fox P, O′Neill W, et al. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting[J]. Journal of Materials Science: Materials in Medicine, 2009, 20(9): 1839-1848.

    [4] Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12/13): 1459-1468.

    [5] Wang X, Wang D S, Gao X S, et al. Research status and development in laser additive manufacturing of light alloy components[J]. Applied Laser, 2016(4): 478-483.

    [6] Yi H, Bai P K, Liu B, et al. Present situation and development trend of selective laser melting technology for metal powder[J]. Casting Forging Welding, 2010, 39(1): 140-144.

    [7] Gu D, Hagedorn Y, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.

    [8] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069.

    [9] Li H X, Huang B Y, Sun F, et al. Microstructure and tensile properties of Ti-6Al-4V alloys fabricated by selective laser melting[J]. Rare Metal Materials and Engineering, 2013, 42(2): 209-212.

    [10] Li R D, Liu J H, Shi Y S, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9/10/11/12): 1025-1035.

    [11] Heinl P, Müller L, Korner C, et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 2008, 4(5): 1536-1544.

    [12] Wu S Q, Lu Y J, Gan Y L, et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments[J]. Journal of Alloys and Compounds, 2016, 672: 643-652.

    [13] Brunello G, Sivolella S, Meneghello R, et al. Powder-based 3D printing for bone tissue engineering[J]. Biotechnology Advances, 2016, 34 (5): 740-753.

    [14] Gu D D, Shen Y F. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder[J]. Journal of Alloys and Compounds, 2007, 432(1/2): 163-166.

    [15] Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of pre-alloyed powders[J]. Rapid Prototyping Journal, 2010, 16(6): 450-459.

    [16] Yang Y Q, Wang D, Wu W H, et al. Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6): 0601007.

    [17] Sun T T, Yang Y Q, Su X B, et al. Research of densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 2010, 34(4): 443-446.

    [18] Wang D, Yang Y Q, Huang Y L, et al. Impact of inter-layer scan strategy on quality of direct fabrication metal part in SLM process[J]. Laser Technology, 2010, 34(4): 447-451.

    [19] Wang D, Yang Y Q, Wu W H. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese Journal of Lasers, 2009, 36(12): 3233-3239.

    [20] Liu R C, Yang Y Q, Wang D. Research of upper surface roughness of metal parts fabricated by selective laser melting[J]. Laser Technology, 2013, 37(4): 425-430.

    [21] Wang D, Yang Y Q, Huang Y L, et al. Density improvement of metal parts directly fabricated via selective laser melting[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(6): 107-111.

    [22] Yang X W, Yang Y Q, Liu Y, et al. Study on dimensional accuracy of typical geometric features manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(3): 0303004.

    [23] Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features[J]. Materials Science and Engineering, 2006, 428(1): 148-158.

    [24] Sun J F, Yang Y Q, Yang Z. Study on surface roughness of selective laser melting Ti-6Al-4V based on powder characteristics[J]. Chinese Journal of Lasers, 2016, 43(7): 0702004.

    [25] Chen D N, Liu T T, Liao W H, et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 2016, 43(4): 0403003.

    [26] Yan A R, Yang T T, Wang Z Y, et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese Journal of Lasers, 2016, 43(2): 0203004.

    [27] Mai S Z, Yang Y Q, Wang D. Study on surface morphology and roughness variation of NiCr alloy curved surface manufactured by selective laser melting[J]. Chinese Journal of Lasers, 2015, 42(12): 1203004.

    [28] Yadroitsev I, Smurov I. Surface morphology in selective laser melting of metal powders[J]. Physics Procedia, 2011, 12(1): 264-270.

    [29] Evren Y, Jan D, Kruth J. The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts[J]. Rapid Prototyping Journal, 2011, 17(5): 312-327.

    [30] Nersisyan H H, Yoo B U, Kim Y M, et al. Gas-phase supported rapid manufacturing of Ti-6Al-4V alloy spherical particles for 3D printing[J]. Chemical Engineering Journal, 2016, 304: 232-240.

    Wan Le, Wang Siqi, Zhang Xiaowei, Jiang Yehua. Forming Quality of Titanium Alloys by Selective Laser Melting Based on Partition Scanning[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91401
    Download Citation