• Acta Optica Sinica
  • Vol. 41, Issue 10, 1001002 (2021)
Caiyu Wang1、2、3, Kee Yuan1、3、4、*, Dongfeng Shi1、3, Jian Huang1、3, Xinxin Chen1、2、3, Wei Yang1、3, and Linbin Zha1、3
Author Affiliations
  • 1Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
  • 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 3Advanced Laser Technology Laboratory of Anhui Province, Hefei, Anhui 230037, China
  • 4State Key Laboratory of Pulsed Power Laser Technology, Hefei, Anhui 230037, China
  • show less
    DOI: 10.3788/AOS202141.1001002 Cite this Article Set citation alerts
    Caiyu Wang, Kee Yuan, Dongfeng Shi, Jian Huang, Xinxin Chen, Wei Yang, Linbin Zha. Simulation of Atmospheric Turbulence Profile Measured by Differential Wavefront Lidar[J]. Acta Optica Sinica, 2021, 41(10): 1001002 Copy Citation Text show less
    References

    [1] Cao M H, Wu X, Wang H Q et al. Performance of faster-than-nyquist optical communication system under Gamma-Gamma atmospheric turbulence[J]. Chinese Journal of Lasers, 47, 0906003(2020).

    [2] He W G, Wu J, Yang C P et al. Numerical simulation of beam propagation through atmospheric turbulence for laser radar[J]. Proceedings of SPIE, 6832, 683225(2008).

    [3] Frehlich R. Simulation of laser propagation in a turbulent atmosphere[J]. Applied Optics, 39, 393-397(2000).

    [4] Baker G J, Benson R S. Gaussian beam scintillation on ground-to-space paths: the importance of beam wander[J]. Proceedings of SPIE, 5550, 225-235(2004). http://spie.org/Publications/Proceedings/Paper/10.1117/12.558812

    [5] Sjöqvist L, Henriksson M, Steinvall O. Simulation of laser beam propagation over land and sea using phase screens: a comparison with experimental data[J]. Proceedings of SPIE, 5989, 59890D(2005). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=880870

    [6] Chen Z B, Zhang D X, Xiao C et al. Precision analysis of turbulence phase screens and their influence on the simulation of Gaussian beam propagation in turbulent atmosphere[J]. Applied Optics, 59, 3726-3735(2020). http://www.researchgate.net/publication/340221750_Precision_analysis_of_turbulence_phase_screens_and_itsinfluence_on_simulation_of_Gaussian-beampropagating_in_the_turbulent_atmosphere

    [7] Jia P, Cai D M, Wang D et al. Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer[J]. Monthly Notices of the Royal Astronomical Society, 447, 3467-3474(2015). http://mnras.oxfordjournals.org/content/447/4/3467

    [8] Chahine Y K, Tedder S A, Vyhnalek B E et al. Beam propagation through atmospheric turbulence using an altitude-dependent structure profile with non-uniformly distributed phase screens[J]. Proceedings of SPIE, 11272, 1127215(2020).

    [9] Liu M W, Li Y C. Propagation of OFDM-OAM optical signal in atmospheric turbulence[J]. Acta Optica Sinica, 39, 0706002(2019).

    [10] Strasburg J D, Harper W W. Impact of atmospheric turbulence on beam propagation[J]. Proceedings of SPIE, 5413, 93-102(2004).

    [11] Underwood T A, Voelz D G. Wave optics approach for incoherent imaging simulation through distributed turbulence[J]. Proceedings of SPIE, 8877, 88770G(2013). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2025396

    [12] Zhang J Q, Zhai Y W, Fu S Y et al. Propagation properties of radially-polarized vector beams under a turbulent atmosphere[J]. Acta Optica Sinica, 40, 1101001(2020).

    [13] Charnotskii M. Comparison of four techniques for turbulent phase screens simulation[J]. Journal of the Optical Society of America A, 37, 738-747(2020). http://www.researchgate.net/publication/340070340_Comparison_of_four_techniques_for_turbulentphase_screens_simulation

    [14] Charnotskii M. Sparse spectrum model for a turbulent phase[J]. Journal of the Optical Society of America A, 30, 479-488(2013). http://www.opticsinfobase.org/josaa/abstract.cfm?uri=josaa-30-3-479

    [15] Paulson D A, Wu C S, Davis C C. Randomized spectral sampling for efficient simulation of laser propagation through optical turbulence[J]. Journal of the Optical Society of America B, 36, 3249-3262(2019). http://arxiv.org/abs/1905.07074v1

    [16] Feng F, Li C W. Simulation of atmospheric turbulence phase screen based on wavelet analysis[J]. Acta Optica Sinica, 37, 0101004(2017).

    [17] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE(2005).

    [18] Schmidt J D. Numerical simulation of optical wave propagation with examples in MATLAB[M]. Bellingham: SPIE(2010).

    [19] Li J C, Peng Z J, Fu Y C. Diffraction transfer function and its calculation of classic diffraction formula[J]. Optics Communications, 280, 243-248(2007). http://www.sciencedirect.com/science/article/pii/S0030401807008504

    [20] Eaton F D, Peterson W A, Hines J R et al. Comparison of two techniques for determining atmospheric seeing[J]. Proceedings of SPIE, 0926, 319-334(1988). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1252379

    [21] Gimmestad G, Roberts D, Stewart J et al. Development of a lidar technique for profiling optical turbulence[J]. Optical Engineering, 51, 101713(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ISA-2014-JTu2C.1

    [22] Rao R Z[M]. Modern atmospheric optics, 472(2012).

    Caiyu Wang, Kee Yuan, Dongfeng Shi, Jian Huang, Xinxin Chen, Wei Yang, Linbin Zha. Simulation of Atmospheric Turbulence Profile Measured by Differential Wavefront Lidar[J]. Acta Optica Sinica, 2021, 41(10): 1001002
    Download Citation