• Opto-Electronic Engineering
  • Vol. 47, Issue 4, 190272 (2020)
Zhang Lihong1、2、3, Shen Feng1、2、*, and Lan Bin1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190272 Cite this Article
    Zhang Lihong, Shen Feng, Lan Bin. Characteristic analysis of orbital angular momentum of vortex beam propagating in atmospheric turbulent[J]. Opto-Electronic Engineering, 2020, 47(4): 190272 Copy Citation Text show less
    References

    [1] Ke X Z, Wang J. Generation, transmission, detection and application of vortex beams[M]. Beijing: Science Press, 2018.

    [2] Chen R S, Wang J H, Zhang X Q, et al. Fiber-based mode converter for generating optical vortex beams[J]. Opto-Electronic Advances, 2018, 1(7): 180003.

    [3] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456.

    [4] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity[J]. Opto-Electronic Advances, 2018, 1(5): 180006.

    [5] Lv H, Ke X Z. Research on the beam with orbital angular momentum used in encoding and decoding of optical communication[J]. Acta Optica Sinica, 2009, 29(2): 331–335.

    [6] Yue Y, Bozinovic N, Ren Y X, et al. 1.6-Tbit/s muxing, transmission and demuxing through 1.1-km of vortex fiber carrying 2 OAM beams each with 10 wavelength channels[C]//Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013.

    [7] Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062–4065.

    [8] Malik M, O’Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195–13200.

    [9] Chen F N, Chen J J, Zhao Q, et al. Properties of high order bessel gaussian beam propagation in non-kolmogorov atmosphere turbulence[J]. Chinese Journal of Lasers, 2012, 39(9): 913001.

    [10] Jang Y S, Zhang X G, Wang S H, et al. Propagation of partially coherent bessel-gaussian beams in non-kolmogorov turbulence[J]. Acta Photonica Sinica, 2014, 43(1): 101001.

    [11] Ke X Z, Wang C Z. Intensity distribution of the partially coherent vortex beams propagating in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110604.

    [12] Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 0101005.

    [13] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901.

    [14] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414–2429.

    [15] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142–144.

    [16] Zhang Y X, Cang J. Effects of turbulent aberrations on probability distribution of orbital angular momentum for optical communication[J]. Chinese Physics Letters, 2009, 26(7): 074220.

    [17] Li F, Tang H, Jiang Y S, et al. Spiral spectrum of laguerre-gaussian beams propagating in turbulent atmosphere[J]. Acta Physica Sinica, 2011, 60(1): 014204.

    [18] Torner L, Torres J P, Carrasco S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873–881.

    [19] Li F. Propagation characteristics of optical vortices beam in intermediate fluctuation turbulent atmosphere[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070101.

    [20] Cheng M J, Guo L X, Li J T, et al. Propagation of an optical vortex carried by a partially coherent laguerre–gaussian beam in turbulent ocean[J]. Applied Optics, 2016, 55(17): 4642–4648.

    [21] Zhang W Y, Kuzyk M G. Effect of a thin optical Kerr medium on a laguerre-gaussian beam[J]. Applied Physics Letters, 2006, 89(10): 101103.

    [22] Ding P F. Stabilization analysis of phase singularity of vortex beams with integral and fractional orders[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(5): 118–122.

    [23] He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 1995, 75(5): 826–829.

    [24] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. New York: Academic Press, 2014.

    [25] Wang L J, Li Q, Wei H G, et al. Numerical simulation and validation of phase screen distorted by atmospheric turbulence[J]. Opto-Electronic Engineering, 2007, 34(3): 1–4, 9.

    [26] Zou L, Zhao S M, Wang L. The effects of atmospheric turbulence on orbital angular momentum-multiplexed system[J]. Acta Photonica Sinica, 2014, 43(9): 0901001.

    [27] Wang F, Yu J Y, Liu X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203.

    [28] Peng H. Research of the sotchastic parallel gradient descent algorithm for wavefront control technique[D]. Changsha: National University of Defense Technology, 2008.

    [29] Lane R G, Glindemann A, Dainty J. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209–224.

    Zhang Lihong, Shen Feng, Lan Bin. Characteristic analysis of orbital angular momentum of vortex beam propagating in atmospheric turbulent[J]. Opto-Electronic Engineering, 2020, 47(4): 190272
    Download Citation