• Chinese Journal of Lasers
  • Vol. 48, Issue 19, 1901005 (2021)
Guohong Xiang1、2、3, Siqi Jia1、2, Depeng Li1、2, Jingrui Ma1、2, Pai Liu1、2, Kai Wang1、2, Kwok Hoi-Sing3, Mingbin Yu4、5, and Xiaowei Sun1、2、*
Author Affiliations
  • 1Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Shenzhen, Guangdong 518055, China
  • 2Guangdong Provincial Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
  • 3State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Hong Kong 999077, China
  • 4Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
  • 5Shanghai Industrial Technology Research Institute, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL202148.1901005 Cite this Article Set citation alerts
    Guohong Xiang, Siqi Jia, Depeng Li, Jingrui Ma, Pai Liu, Kai Wang, Kwok Hoi-Sing, Mingbin Yu, Xiaowei Sun. Design and Simulation of a Colloidal Quantum Dot Vertical-Cavity Surface-Emitting Laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1901005 Copy Citation Text show less
    References

    [1] Kovalenko M V, Manna L, Cabot A et al. Prospects of nanoscience with nanocrystals[J]. ACS Nano, 9, 1012-1057(2015).

    [2] Kagan C R, Lifshitz E, Sargent E H et al. Building devices from colloidal quantum dots[J]. Science, 353, aac5523(2016).

    [3] Pietryga J M, Park Y S, Lim J et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 116, 10513-10622(2016).

    [4] Kim T, Kim K H, Kim S et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 586, 385-389(2020).

    [5] Klimov V I, Mikhailovsky A A, Xu S et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 290, 314-317(2000).

    [6] Klimov V I, Mikhailovsky A A, McBranch D W et al. Quantization of multiparticle auger rates in semiconductor quantum dots[J]. Science, 287, 1011-1013(2000).

    [7] Fan F J, Voznyy O, Sabatini R P et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 544, 75-79(2017).

    [8] Lim J, Park Y S, Klimov V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping[J]. Nature Materials, 17, 42-49(2018).

    [9] Roh J, Park Y S, Lim J et al. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity[J]. Nature Communications, 11, 271(2020).

    [10] Chen Y J, Guilhabert B, Herrnsdorf J et al. Flexible distributed-feedback colloidal quantum dot laser[J]. Applied Physics Letters, 99, 241103(2011).

    [11] Park Y S, Roh J, Diroll B T et al. Colloidal quantum dot lasers[J]. Nature Reviews Materials, 6, 382-401(2021).

    [12] Zhu Y P, Xie W Q, Bisschop S et al. On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping[J]. ACS Photonics, 4, 2446-2452(2017).

    [13] Hoogland S, Sukhovatkin V, Howard I et al. A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength[J]. Optics Express, 14, 3273-3281(2006).

    [14] le Feber B, Prins F, De Leo E et al. Colloidal-quantum-dot ring lasers with active color control[J]. Nano Letters, 18, 1028-1034(2018).

    [15] Gupta S, Waks E. Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity[J]. Optics Express, 21, 29612-29619(2013).

    [16] Chang H, Min K, Lee M et al. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone[J]. Nanoscale, 8, 6571-6576(2016).

    [17] Xie W Q, Zhu Y P, Bisschop S et al. Colloidal quantum dots enabling coherent light sources for integrated silicon-nitride photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-13(2017).

    [18] Grim J Q, Manna L, Moreels I. A sustainable future for photonic colloidal nanocrystals[J]. Chemical Society Reviews, 44, 5897-5914(2015).

    [19] Lee Y J, Yeh T W, Zou C et al. Graphene quantum dot vertical cavity surface-emitting lasers[J]. ACS Photonics, 6, 2894-2901(2019).

    [20] Dang C, Nurmikko A, Breen C et al. Optical gain and green/red vertical cavity surface emitting lasing from cdse-based colloidal nanocrystal quantum dot thin films[C]. //CLEO: 2011-Laser Science to Photonic Applications, May 1-6, 2011, Baltimore, MD, USA, 1-2(2011).

    [21] Chen J, Wang L X, Pan J Y et al. Pumped stimulated vertical cavity surface emitting laser by solution-processed method[C]. //2019 3rd International Conference on Circuits, System and Simulation (ICCSS), June 13-15, 2019, Nanjing, China., 25-28(2019).

    [22] Chen J, Du W N, Shi J W et al. Perovskite quantum dot lasers[J]. InfoMat, 2, 170-183(2020).

    [23] Liu A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 47, 0701005(2020).

    [24] Zhang Z, Ning Y Q, Zhang J W et al. Design and fabrication of 1160-nm optically-pumped vertical-external-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 47, 0701020(2020).

    Guohong Xiang, Siqi Jia, Depeng Li, Jingrui Ma, Pai Liu, Kai Wang, Kwok Hoi-Sing, Mingbin Yu, Xiaowei Sun. Design and Simulation of a Colloidal Quantum Dot Vertical-Cavity Surface-Emitting Laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1901005
    Download Citation