• Chinese Journal of Lasers
  • Vol. 48, Issue 19, 1901005 (2021)
Guohong Xiang1、2、3, Siqi Jia1、2, Depeng Li1、2, Jingrui Ma1、2, Pai Liu1、2, Kai Wang1、2, Kwok Hoi-Sing3, Mingbin Yu4、5, and Xiaowei Sun1、2、*
Author Affiliations
  • 1Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Shenzhen, Guangdong 518055, China
  • 2Guangdong Provincial Key Laboratory for Advanced Quantum Dot Displays and Lighting, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
  • 3State Key Laboratory on Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology, Hong Kong 999077, China
  • 4Shanghai Institute of Microsystem and Information Technology, Shanghai 200050, China
  • 5Shanghai Industrial Technology Research Institute, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL202148.1901005 Cite this Article Set citation alerts
    Guohong Xiang, Siqi Jia, Depeng Li, Jingrui Ma, Pai Liu, Kai Wang, Kwok Hoi-Sing, Mingbin Yu, Xiaowei Sun. Design and Simulation of a Colloidal Quantum Dot Vertical-Cavity Surface-Emitting Laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1901005 Copy Citation Text show less
    Schematic diagram of the designed colloidal QDs VCSEL device
    Fig. 1. Schematic diagram of the designed colloidal QDs VCSEL device
    Schematic diagram of the energy level of the current injection structure
    Fig. 2. Schematic diagram of the energy level of the current injection structure
    Calculated reflectivity spectra of the SiNx/SiO2 DBR and TiO2/SiO2 DBR. (a) SiNx/SiO2 DBR; (b) TiO2/SiO2 DBR
    Fig. 3. Calculated reflectivity spectra of the SiNx/SiO2 DBR and TiO2/SiO2 DBR. (a) SiNx/SiO2 DBR; (b) TiO2/SiO2 DBR
    Standing wave profile at different cavity lengths. (a) λ/2; (b) 3λ/2
    Fig. 4. Standing wave profile at different cavity lengths. (a) λ/2; (b) 3λ/2
    Refractive index and field distribution in λ/2 QD-VCSEL
    Fig. 5. Refractive index and field distribution in λ/2 QD-VCSEL
    Output spectrum and electrical field distribution of λ/2 QD-VCSEL.(a) Output spectrum; (b) electrical field distribution
    Fig. 6. Output spectrum and electrical field distribution of λ/2 QD-VCSEL.(a) Output spectrum; (b) electrical field distribution
    Refractive index and field distribution in 3λ/2 QD-VCSEL
    Fig. 7. Refractive index and field distribution in 3λ/2 QD-VCSEL
    Output spectrum and electrical field distribution of 3λ/2 QD-VCSEL. (a) Output spectrum; (b) electrical field distribution
    Fig. 8. Output spectrum and electrical field distribution of 3λ/2 QD-VCSEL. (a) Output spectrum; (b) electrical field distribution
    Far field distribution of the simulated devices
    Fig. 9. Far field distribution of the simulated devices
    Guohong Xiang, Siqi Jia, Depeng Li, Jingrui Ma, Pai Liu, Kai Wang, Kwok Hoi-Sing, Mingbin Yu, Xiaowei Sun. Design and Simulation of a Colloidal Quantum Dot Vertical-Cavity Surface-Emitting Laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1901005
    Download Citation