• Laser & Optoelectronics Progress
  • Vol. 58, Issue 13, 1306022 (2021)
Zhilong Li1, Weihua Zhang2、**, Yimin Wang1, Yufeng Zhang1, Bin Luo3, and Hongna Zhu1、*
Author Affiliations
  • 1School of Physical Science and Technology, Southwest Jiaotong University, Chengdu , Sichuan 610031, China
  • 2College of Meteorology and Ocean, National University of Defense Technology, Changsha , Hunan 410073, China
  • 3School of Information Science and Technology, Southwest Jiaotong University, Chengdu , Sichuan 610031, China
  • show less
    DOI: 10.3788/LOP202158.1306022 Cite this Article Set citation alerts
    Zhilong Li, Weihua Zhang, Yimin Wang, Yufeng Zhang, Bin Luo, Hongna Zhu. Advances of Machine Learning in Brillouin Optical Time Domain Analysis Sensing Systems for Temperature Extraction[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306022 Copy Citation Text show less
    References

    [1] Dong Y K, Zhou D W, Teng L et al. Principle of Brillouin dynamic grating and its applications in optical fiber sensing[J]. Acta Physica Sinica, 66, 075201(2017).

    [2] Liao Y B, Yuan L B, Tian Q. The 40 years of optical fiber sensors in China[J]. Acta Optica Sinica, 38, 0328001(2018).

    [3] Cai H W, Ye Q, Wang Z Y et al. Progress in research of distributed fiber acoustic sensing techniques[J]. Journal of Applied Sciences, 36, 41-58(2018).

    [4] Kumar G. A survey on machine learning techniques in health care industry[J]. International Journal of Recent Research Aspects, 3, 128-132(2016).

    [5] Li H[M]. Statistical learning methods(2019).

    [6] Zhou Z H[M]. Machine learning(2016).

    [7] Zhou Z C, Wang X L, Su R T et al. Application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 53, 080006(2016).

    [8] Wang J J, Li Y Q. Review of methods for improving performance of Brillouin optical time-domain analysis system[J]. Laser & Optoelectronics Progress, 55, 110003(2018).

    [9] Wang T, Tian F, Tang W Q et al. Brillouin frequency shift extraction method for distributed optical fiber temperature sensing system[J]. Laser & Optoelectronics Progress, 56, 170631(2019).

    [10] Zhou D W, Wang B Z, Ba D X et al. Fast distributed Brillouin optical fiber sensing for dynamic strain measurement[J]. Acta Optica Sinica, 38, 0328005(2018).

    [11] Boyd R W[M]. Nonlinear optics(2008).

    [12] Zhou D W, Dong Y K, Wang B Z et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 25, 1889-1902(2017).

    [13] Hu J H, Xia L, Yang L et al. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques[J]. Optics Express, 24, 13610-13620(2016).

    [14] Soto M A, Bolognini G, Pasquale F D. Analysis of pulse modulation format in coded BOTDA sensors[J]. Optics Express, 18, 14878-14892(2010).

    [15] Minardo A, Bernini R, Zeni L. Spatial resolution enhancement in preactivated BOTDA schemes by numerical processing[J]. IEEE Photonics Technology Letters, 24, 1003-1005(2012).

    [16] Li Y Q, An Q, Li X J et al. Optical fiber sensing technology based on loss vector Brillouin optical time domain analysis[J]. Acta Optica Sinica, 36, 0906004(2016).

    [17] Jiang P, Yan L S, Zhou Y et al. Effect and elimination of polarization random noise in Golay-coded Brilouin optical time domain analysis fiber sensors[J]. Acta Optica Sinica, 40, 0706002(2020).

    [18] Jia Z A, Xu C, Liu Y G et al. Research of temperature sensing technology based on Brillouin scattering optical time domain analysis[J]. Optics & Optoelectronic Technology, 13, 54-57(2015).

    [19] Peng Y C, Qian H, Lu H et al. New research progress on distributed optical fiber sensor technique based on BOTDA[J]. Laser & Optoelectronics Progress, 50, 100005(2013).

    [20] Huang W F, Wang X C, Wang J F et al. Temperature characteristic of stimulated Brillouin scattering in single-mode fiber[J]. Chinese Journal of Lasers, 40, 0405001(2013).

    [21] Liang Y X, Jiang J L, Chen Y X et al. Optimized feedforward neural network training for efficient Brillouin frequency shift retrieval in fiber[J]. IEEE Access, 7, 68034-68042(2019).

    [22] Wang F, Zhan W W, Lu Y G et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. Journal of Lightwave Technology, 33, 4101-4108(2015).

    [23] Koyamada Y, Sato S, Nakamura S et al. Simulating and designing Brillouin gain spectrum in single-mode fibers[J]. Journal of Lightwave Technology, 22, 631-639(2004).

    [24] Shang Q F, Hu Y T, Liu W. Research on Brillouin frequency shift extraction method of BOTDA sensing system[J]. Semiconductor Optoelectronics, 38, 633-638, 669(2017).

    [25] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [26] Kuremoto T, Kimura S, Kobayashi K et al. Time series forecasting using a deep belief network with restricted Boltzmann machines[J]. Neurocomputing, 137, 47-56(2014).

    [27] Collobert R, Weston J, Bottou L et al. Natural language processing (almost) from scratch[EB/OL]. https://arxiv.org/abs/1103.0398

    [28] Azad A K, Wang L, Guo N et al. Signal processing using artificial neural network for BOTDA sensor system[J]. Optics Express, 24, 6769-6782(2016).

    [29] Wu H, Wang L, Guo N et al. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction[J]. Journal of Lightwave Technology, 35, 4159-4167(2017).

    [30] Wu H, Wang L, Zhao Z Y et al. Support vector machine based differential pulse-width pair Brillouin optical time domain analyzer[J]. IEEE Photonics Journal, 10, 1-11(2018).

    [31] Zhu H N, Yu L, Zhang Y F et al. Optimized support vector machine assisted BOTDA for temperature extraction with accuracy enhancement[J]. IEEE Photonics Journal, 12, 1-14(2020).

    [32] Ruiz-Lombera R, Fuentes A, Rodriguez-Cobo L et al. Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks[J]. Journal of Lightwave Technology, 36, 2114-2121(2018).

    [33] Azad A K, Wang L, Guo N et al. Temperature sensing in BOTDA system by using artificial neural network[J]. Electronics Letters, 51, 1578-1580(2015).

    [34] Yu C Y, Wang B W, Wang L et al. The application of neural network in Brillouin optical time domain analyzer for temperature extraction[J]. Study on Optical Communications, 42-47(2017).

    [35] Cao Z Y, Guo N, Li M H et al. Back propagation neutral network based signal acquisition for Brillouin distributed optical fiber sensors[J]. Optics Express, 27, 4549-4561(2019).

    [36] Yu K L, Guo N, Cao Z Y et al. Fast information acquisition using spectra subtraction for Brillouin distributed fiber sensors[J]. Optics Express, 27, 9696-9704(2019).

    [37] Wang B W, Guo N, Khan F N et al. Extraction of temperature distribution using deep neural networks for BOTDA sensing system[C], 1-4(2017).

    [38] Wang B W, Wang L, Guo N et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy[J]. Optics Express, 27, 2530-2543(2019).

    [39] Wu H, Wan Y Y, Tang M et al. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks[J]. Journal of Lightwave Technology, 37, 2648-2653(2019).

    [40] Wang J J, Li Y Q, Liao J H. Temperature extraction for Brillouin optical fiber sensing system based on extreme learning machine[J]. Optics Communications, 453, 124418(2019).

    [41] Zhang Y F, Yu L, Hu Z L et al. Ultrafast and accurate temperature extraction via kernel extreme learning machine for BOTDA sensors[J]. Journal of Lightwave Technology, 39, 1537-1543(2021).

    [42] Zhang Y F, Li Y J, Cheng L et al. Fast temperature extraction via Echo State Network for BOTDA sensors[C], M4A.81(2020).

    Zhilong Li, Weihua Zhang, Yimin Wang, Yufeng Zhang, Bin Luo, Hongna Zhu. Advances of Machine Learning in Brillouin Optical Time Domain Analysis Sensing Systems for Temperature Extraction[J]. Laser & Optoelectronics Progress, 2021, 58(13): 1306022
    Download Citation