• Advanced Photonics
  • Vol. 2, Issue 6, 066005 (2020)
Pouya Rajaeipour*, Kaustubh Banerjee, Alex Dorn, Hans Zappe, and Çağlar Ataman
Author Affiliations
  • University of Freiburg, Gisela and Erwin Sick Laboratory for Micro-Optics, Department of Microsystems Engineering, Freiburg, Germany
  • show less
    DOI: 10.1117/1.AP.2.6.066005 Cite this Article Set citation alerts
    Pouya Rajaeipour, Kaustubh Banerjee, Alex Dorn, Hans Zappe, Çağlar Ataman, "Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics," Adv. Photon. 2, 066005 (2020) Copy Citation Text show less
    References

    [1] R. Tyson. Principles of Adaptive Optics(2010).

    [2] J. A. Kubby. Adaptive Optics for Biological Imaging(2013).

    [3] P.-Y. Madec. Overview of deformable mirror technologies for adaptive optics and astronomy. Proc. SPIE, 8447, 844705(2012).

    [4] S. Hu et al. Double-deformable-mirror adaptive optics system for phase compensation. Appl. Opt., 45, 2638-2642(2006).

    [5] R. J. Zawadzki et al. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. J. Opt. Soc. Am. A, 24, 1373-1383(2007).

    [6] W. Zou, X. Qi, S. A. Burns. Woofer–tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed. Opt. Express, 2, 1986-2004(2011).

    [7] Q. Li et al. Woofer–tweeter adaptive optical structured illumination microscopy. Photonics Res., 5, 329-334(2017).

    [8] J. D. Barchers. Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations. J. Opt. Soc. Am. A, 19, 926-945(2002).

    [9] M. R. Allen, J. J. Kim, B. N. Agrawal. Correction of an active space telescope mirror using a deformable mirror in a woofer–tweeter configuration. J. Astron. Telesc. Instrum. Syst., 2, 029001(2016).

    [10] D. J. Wahl et al. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice. Biomed. Opt. Express, 7, 1-12(2016).

    [11] R. D. Simmonds et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Opt. Express, 19, 24122-24128(2011).

    [12] X. Lei et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization. Opt. Express, 20, 22143-22157(2012).

    [13] A. J. Wright et al. Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. Opt. Express, 14, 222-228(2006).

    [14] K. Banerjee et al. Optofluidic adaptive optics. Appl. Opt., 57, 6338-6344(2018).

    [15] A. Tanabe et al. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy. J. Biomed. Opt., 21, 121503(2016).

    [16] S. Bonora et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt. Express, 23, 21931-21941(2015).

    [17] K. Philipp et al. Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Sci. Rep., 9, 9532(2019).

    [18] P. Rajaeipour et al. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator. Opt. Express, 28, 9944-9956(2020).

    [19] H. R. Verstraete et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging. Biomed. Opt. Express, 8, 2261-2275(2017).

    [20] J. M. Bueno et al. Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens. Opt. Express, 26, 14278-14287(2018).

    [21] K. Banerjee et al. Refractive opto-fluidic wavefront modulator with electrostatic push–pull actuation. Proc. SPIE, 10886, 108860D(2019).

    [22] C. Correia et al. Minimum-variance control for woofer–tweeter systems in adaptive optics. J. Opt. Soc. Am. A, 27, A133-A144(2010).

    [23] R. Conan et al. Distributed modal command for a two-deformable-mirror adaptive optics system. Appl. Opt., 46, 4329-4340(2007).

    [24] J.-F. Lavigne, J.-P. Véran. Woofer–tweeter control in an adaptive optics system using a Fourier reconstructor. J. Opt. Soc. Am. A, 25, 2271-2279(2008).

    [25] W. Zou, X. Qi, S. A. Burns. Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system. Opt. Lett., 33, 2602-2604(2008).

    [26] C. Li et al. A correction algorithm to simultaneously control dual deformable mirrors in a woofer–tweeter adaptive optics system. Opt. Express, 18, 16671-16684(2010).

    [27] P. Rajaeipour et al. Optimization-based real-time open-loop control of an optofluidic refractive phase modulator. Appl. Opt., 58, 1064-1072(2019).

    [28] D. Malacara. Optical Shop Testing, 59(2007).

    [29] P. Rajaeipour et al. Optimization-based open-loop control of phase modulators for adaptive optics. Proc. SPIE, 10886, 108861A(2019).

    [30] D. J. Fischer et al. Vector formulation for interferogram surface fitting. Appl. Opt., 32, 4738-4743(1993).

    [31] L. N. Thibos et al. Standards for reporting the optical aberrations of eyes. J. Refractive Surg., 18, S652-S660(2002).

    [32] J. Mertz, H. Paudel, T. G. Bifano. Field of view advantage of conjugate adaptive optics in microscopy applications. Appl. Opt., 54, 3498-3506(2015).

    [33] M. J. Booth et al. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U.S.A., 99, 5788-5792(2002).

    [34] D. Débarre, M. J. Booth, T. Wilson. Image based adaptive optics through optimisation of low spatial frequencies. Opt. Express, 15, 8176-8190(2007).

    [35] A. Facomprez, E. Beaurepaire, D. Débarre. Accuracy of correction in modal sensorless adaptive optics. Opt. Express, 20, 2598-2612(2012).

    Pouya Rajaeipour, Kaustubh Banerjee, Alex Dorn, Hans Zappe, Çağlar Ataman, "Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics," Adv. Photon. 2, 066005 (2020)
    Download Citation