• Advanced Photonics
  • Vol. 2, Issue 6, 066005 (2020)
Pouya Rajaeipour*, Kaustubh Banerjee, Alex Dorn, Hans Zappe, and Çağlar Ataman
Author Affiliations
  • University of Freiburg, Gisela and Erwin Sick Laboratory for Micro-Optics, Department of Microsystems Engineering, Freiburg, Germany
  • show less
    DOI: 10.1117/1.AP.2.6.066005 Cite this Article Set citation alerts
    Pouya Rajaeipour, Kaustubh Banerjee, Alex Dorn, Hans Zappe, Çağlar Ataman. Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics[J]. Advanced Photonics, 2020, 2(6): 066005 Copy Citation Text show less
    References

    [1] R. Tyson. Principles of Adaptive Optics(2010).

    [2] J. A. Kubby. Adaptive Optics for Biological Imaging(2013).

    [3] P.-Y. Madec. Overview of deformable mirror technologies for adaptive optics and astronomy. Proc. SPIE, 8447, 844705(2012).

    [4] S. Hu et al. Double-deformable-mirror adaptive optics system for phase compensation. Appl. Opt., 45, 2638-2642(2006).

    [5] R. J. Zawadzki et al. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions. J. Opt. Soc. Am. A, 24, 1373-1383(2007).

    [6] W. Zou, X. Qi, S. A. Burns. Woofer–tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm. Biomed. Opt. Express, 2, 1986-2004(2011).

    [7] Q. Li et al. Woofer–tweeter adaptive optical structured illumination microscopy. Photonics Res., 5, 329-334(2017).

    [8] J. D. Barchers. Closed-loop stable control of two deformable mirrors for compensation of amplitude and phase fluctuations. J. Opt. Soc. Am. A, 19, 926-945(2002).

    [9] M. R. Allen, J. J. Kim, B. N. Agrawal. Correction of an active space telescope mirror using a deformable mirror in a woofer–tweeter configuration. J. Astron. Telesc. Instrum. Syst., 2, 029001(2016).

    [10] D. J. Wahl et al. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice. Biomed. Opt. Express, 7, 1-12(2016).

    [11] R. D. Simmonds et al. Three dimensional laser microfabrication in diamond using a dual adaptive optics system. Opt. Express, 19, 24122-24128(2011).

    [12] X. Lei et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization. Opt. Express, 20, 22143-22157(2012).

    [13] A. J. Wright et al. Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror. Opt. Express, 14, 222-228(2006).

    [14] K. Banerjee et al. Optofluidic adaptive optics. Appl. Opt., 57, 6338-6344(2018).

    [15] A. Tanabe et al. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy. J. Biomed. Opt., 21, 121503(2016).

    [16] S. Bonora et al. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Opt. Express, 23, 21931-21941(2015).

    [17] K. Philipp et al. Diffraction-limited axial scanning in thick biological tissue with an aberration-correcting adaptive lens. Sci. Rep., 9, 9532(2019).

    [18] P. Rajaeipour et al. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator. Opt. Express, 28, 9944-9956(2020).

    [19] H. R. Verstraete et al. Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging. Biomed. Opt. Express, 8, 2261-2275(2017).

    [20] J. M. Bueno et al. Wavefront correction in two-photon microscopy with a multi-actuator adaptive lens. Opt. Express, 26, 14278-14287(2018).

    [21] K. Banerjee et al. Refractive opto-fluidic wavefront modulator with electrostatic push–pull actuation. Proc. SPIE, 10886, 108860D(2019).

    [22] C. Correia et al. Minimum-variance control for woofer–tweeter systems in adaptive optics. J. Opt. Soc. Am. A, 27, A133-A144(2010).

    [23] R. Conan et al. Distributed modal command for a two-deformable-mirror adaptive optics system. Appl. Opt., 46, 4329-4340(2007).

    [24] J.-F. Lavigne, J.-P. Véran. Woofer–tweeter control in an adaptive optics system using a Fourier reconstructor. J. Opt. Soc. Am. A, 25, 2271-2279(2008).

    [25] W. Zou, X. Qi, S. A. Burns. Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system. Opt. Lett., 33, 2602-2604(2008).

    [26] C. Li et al. A correction algorithm to simultaneously control dual deformable mirrors in a woofer–tweeter adaptive optics system. Opt. Express, 18, 16671-16684(2010).

    [27] P. Rajaeipour et al. Optimization-based real-time open-loop control of an optofluidic refractive phase modulator. Appl. Opt., 58, 1064-1072(2019).

    [28] D. Malacara. Optical Shop Testing, 59(2007).

    [29] P. Rajaeipour et al. Optimization-based open-loop control of phase modulators for adaptive optics. Proc. SPIE, 10886, 108861A(2019).

    [30] D. J. Fischer et al. Vector formulation for interferogram surface fitting. Appl. Opt., 32, 4738-4743(1993).

    [31] L. N. Thibos et al. Standards for reporting the optical aberrations of eyes. J. Refractive Surg., 18, S652-S660(2002).

    [32] J. Mertz, H. Paudel, T. G. Bifano. Field of view advantage of conjugate adaptive optics in microscopy applications. Appl. Opt., 54, 3498-3506(2015).

    [33] M. J. Booth et al. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. U.S.A., 99, 5788-5792(2002).

    [34] D. Débarre, M. J. Booth, T. Wilson. Image based adaptive optics through optimisation of low spatial frequencies. Opt. Express, 15, 8176-8190(2007).

    [35] A. Facomprez, E. Beaurepaire, D. Débarre. Accuracy of correction in modal sensorless adaptive optics. Opt. Express, 20, 2598-2612(2012).

    Pouya Rajaeipour, Kaustubh Banerjee, Alex Dorn, Hans Zappe, Çağlar Ataman. Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics[J]. Advanced Photonics, 2020, 2(6): 066005
    Download Citation