• Infrared and Laser Engineering
  • Vol. 54, Issue 2, 20240429 (2025)
Yuxiu MIAO, Xuemei YANG, Bo HU, and Houkun LIANG
Author Affiliations
  • School of Electronic Information, Sichuan University, Chengdu 610065, China
  • show less
    DOI: 10.3788/IRLA20240429 Cite this Article
    Yuxiu MIAO, Xuemei YANG, Bo HU, Houkun LIANG. Measurement of transmission loss and generation of optical difference frequency in ZnGeP2 waveguide[J]. Infrared and Laser Engineering, 2025, 54(2): 20240429 Copy Citation Text show less
    References

    [1] A V MURAVIEV, V O SMOLSKI, Z E LOPARO et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nature Photonics, 12, 209-214(2018).

    [2] U WILLER, M SARAJI, A KHORSANDI et al. Near-and mid-infrared laser monitoring of industrial processes, environment and security applications. Optics and Lasers in Engineering, 44, 699-710(2006).

    [3] L WANG, B MIZAIKOFF. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy. Analytical and Bioanalytical Chemistry, 391, 1641-1654(2008).

    [4] M NIKODEM, G WYSOCKI. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing. Sensors, 12, 16466-16481(2012).

    [5] Linzhen HE, Kan TIAN, Xuemei YANG et al. Development and application of mid-infrared high-energy, high-power, few-cycle optical parametric chirped pulse amplifier (invited). Infrared and Laser Engineering, 50, 20210396(2021).

    [6] Dunxiang ZHANG, Bo HU, Xuemei YANG et al. Research progress of on-chip nonlinear mid-infrared lasers (invited). Infrared and Laser Engineering, 53, 20240186(2024).

    [7] LIAN Y, TIAN W, SUN H, et al. Highefficiency, widely tunable MgO: PPLN optical parametric oscillat[C]Photonics. MDPI, 2023, 10(5): 505.

    [8] J WUEPPEN, S NYGA, B JUNGBLUTH et al. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength. Optics Letters, 41, 4225-4228(2016).

    [9] A S KOWLIGY, A LIND, D D HICKSTEIN et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Optics Letters, 43, 1678-1681(2018).

    [10] A S KOWLIGY, D R CARLSON, D D HICKSTEIN et al. Mid-infrared frequency combs at 10 GHz. Optics Letters, 45, 3677-3680(2020).

    [11] J MISHRA, M JANKOWSKI, A Y HWANG et al. Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate. Optics Express, 30, 32752-32760(2022).

    [12] L LEDEZMA, R SEKINE, Q GUO et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303-308(2022).

    [13] R BECHEKER, M BAILLY, S IDLAHCEN et al. Optical parametric generation in OP-GaAs waveguides pumped by a femtosecond fluoride fiber laser. Optics Letters, 47, 886-889(2022).

    [14] B HU, X YANG, J WU et al. Highly efficient octave-spanning long-wavelength infrared generation with a 74% quantum efficiency in a χ (2) waveguide. Nature Communications, 14, 7125(2023).

    [15] DE Rossi A, TIZ V, CALLIGARO M, et al. Measuring propagation loss in a multimode semiconduct waveguide[J]. Journal of Applied Physic s , 2005, 97(7): 073105.

    [16] B HU, L CHEN, X YANG et al. Continuous-wave long-wavelength infrared difference-frequency generation in ZGP driven by near-infrared fiber lasers. Optics Letters, 49, 1101-1104(2024).

    [17] HUNSPERGER R G. Integrated Optics[M]. Berlin: Springer Verlag, 1995.

    Yuxiu MIAO, Xuemei YANG, Bo HU, Houkun LIANG. Measurement of transmission loss and generation of optical difference frequency in ZnGeP2 waveguide[J]. Infrared and Laser Engineering, 2025, 54(2): 20240429
    Download Citation