• Chinese Journal of Lasers
  • Vol. 47, Issue 2, 207036 (2020)
Wu Bingxuan, Liu Peng*, Li Xingyi, Shao Pengfei, and Xu Xiaorong
Author Affiliations
  • Department of Precision Machinery and Precision Instrumentation, School of Engineering Science,University of Science and Technology of China, Hefei, Anhui 230027, China
  • show less
    DOI: 10.3788/CJL202047.0207036 Cite this Article Set citation alerts
    Wu Bingxuan, Liu Peng, Li Xingyi, Shao Pengfei, Xu Xiaorong. Orthotopic Coaxial Projective Imaging for Neurosurgical Navigation[J]. Chinese Journal of Lasers, 2020, 47(2): 207036 Copy Citation Text show less
    References

    [1] Chen W Q, Sun K X, Zheng R S et al. Cancer incidence and mortality in China, 2014[J]. Chinese Journal of Cancer Research, 30, 1-12(2018).

    [2] Allemani C. Matsuda T,di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries[J]. The Lancet, 391, 1023-1075(2018).

    [3] Mezger U, Jendrewski C, Bartels M. Navigation in surgery[J]. Langenbeck's Archives of Surgery, 398, 501-514(2013).

    [4] Orringer D A, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends[J]. Expert Review of Medical Devices, 9, 491-500(2012).

    [5] Wu J S, Lu J F, Gong X et al. Neuronavigation surgery in China: reality and prospects[J]. Chinese Medical Journal, 125, 4497-4503(2012).

    [6] Yan Y M, Guo X. Investigation on interactive electronic sand table system with computer vision[J]. Computer Technology and Development, 27, 195-198(2017).

    [7] Stadie A T, Kockro R A, Serra L et al. Neurosurgical craniotomy localization using a virtual reality planning system versus intraoperative image-guided navigation[J]. International Journal of Computer Assisted Radiology and Surgery, 6, 565-572(2011).

    [8] Meola A, Cutolo F, Carbone M et al. Augmented reality in neurosurgery: a systematic review[J]. Neurosurgical Review, 40, 537-548(2017).

    [9] Birkfellner W, Figl M, Huber K et al. A head-mounted operating binocular for augmented reality visualization in medicine-design and initial evaluation[J]. IEEE Transactions on Medical Imaging, 21, 991-997(2002).

    [10] Yasuda J, Okamoto T, Onda S et al. Novel navigation system by augmented reality technology using a tablet PC for hepatobiliary and pancreatic surgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 14, e1921(2018).

    [11] Mahvash M, Tabrizi L B. A novel augmented reality system of image projection for image-guided neurosurgery[J]. Acta Neurochirurgica, 155, 943-947(2013).

    [12] Tabrizi L B, Mahvash M. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique[J]. Journal of Neurosurgery, 123, 206-211(2015).

    [13] Krempien R, Hoppe H, Kahrs L et al. Projector-based augmented reality for intuitive intraoperative guidance in image-guided 3D interstitial brachytherapy[J]. International Journal of Radiation Oncology Biology Physics, 70, 944-952(2008).

    [14] Li Y, Su X Y, Chen W J. Editable projection display technology of free-form surfaces based on height information[J]. Acta Optica Sinica, 38, 0815026(2018).

    [15] Zuo C, Feng S J, Huang L et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 109, 23-59(2018).

    [16] Liu P, Shao P F, Ma J M et al. A co-axial projection surgical navigation system for breast cancer sentinel lymph node mapping: system design and clinical trial[J]. Proceeding of SPIE, 10868, 108680N(2019).

    [17] Zhang F, Zhu X, Gao J et al. Coaxial projective imaging system for surgical navigation and telementoring[J]. Journal of Biomedical Optics, 24, 105002(2019).

    [18] Moreno D, Taubin G. Simple, accurate, and robust projector-camera calibration. [C]∥2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, October 13-15, 2012. Zurich, Switzerland. New York: IEEE, 13171802(2012).

    [19] Hartley R, Zisserman A[M]. Multiple view geometry in computer vision(2004).

    [20] Heikkila J. Geometric camera calibration using circular control points[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1066-1077(2000).

    [21] Gao X S, Hou X R, Tang J L et al. Complete solution classification for the perspective-three-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 930-943(2003).

    [22] Paraskevopoulos D, Unterberg A, Metzner R et al. Comparative study of application accuracy of two frameless neuronavigation systems:experimental error assessment quantifying registration methods and clinically influencing factors[J]. Neurosurgical Review, 34, 217-228(2011).

    [23] Wang M N, Song Z J. Classification and analysis of the errors in neuronavigation[J]. Neurosurgery, 68, 1131-1143(2011).

    [24] Gerard I J, Kersten-Oertel M, Petrecca K et al. Brain shift in neuronavigation of brain tumors: a review[J]. Medical Image Analysis, 35, 403-420(2017).

    [25] Ohue S, Kumon Y, Nagato S et al. Evaluation of intraoperative brain shift using an ultrasound-linked navigation system for brain tumor surgery[J]. Neurologia Medico-Chirurgica, 50, 291-300(2010).

    [26] Nimsky C, Ganslandt O, Cerny S et al. Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging[J]. Neurosurgery, 47, 1070-1080(2000).

    [27] Tonutti M, Gras G, Yang G Z. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery[J]. Artificial Intelligence in Medicine, 80, 39-47(2017).

    Wu Bingxuan, Liu Peng, Li Xingyi, Shao Pengfei, Xu Xiaorong. Orthotopic Coaxial Projective Imaging for Neurosurgical Navigation[J]. Chinese Journal of Lasers, 2020, 47(2): 207036
    Download Citation