• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 5, 2250030 (2022)
Zezheng Qin1, Yang Liu1, Junke Chi2, Yiming Ma1, and Mingjian Sun1,*
Author Affiliations
  • 1School of Astronautics, Harbin Institute of Technology, Harbin 150000, P. R. China
  • 2Weihai Institute of Product Quality Standards and Metrology, Weihai 264200, P. R. China
  • show less
    DOI: 10.1142/S1793545822500304 Cite this Article
    Zezheng Qin, Yang Liu, Junke Chi, Yiming Ma, Mingjian Sun. The sparse array elements selection in sparse imaging of circular-array photoacoustic tomography[J]. Journal of Innovative Optical Health Sciences, 2022, 15(5): 2250030 Copy Citation Text show less
    References

    [1] D Attwell, S. B Laughlin. An energy budget for signaling in the grey matter of the brain. J. Cerebral Blood Flow Metabol, 21, 1133-1145(2001).

    [2] D Das, A Sharma, P Rajendran, M Pramanik. Another decade of photoacoustic imaging. Phys. Med. Biol, 66, 05TR01(2021).

    [3] L. V Wang, S Hu. Photoacoustic tomography: In vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [4] E Storkebaum, A Quaegebeur, M Vikkula. Carmeliet. Cerebrovascular disorders: Molecular insights and therapeutic opportunities. Nat. Neurosci, 14, 1390-1397(2011).

    [5] N Awasthi, S. K Kalva, M Pramanik, P. K Yalavarthy. Dimensionality reduced plug and play priors for improving photoacoustic tomographic imaging with limited noisy data. Biomed. Opt. Exp, 12, 1320-1338(2021).

    [6] W Qiao, Z Chen. All-optically integrated photoacoustic and optical coherence tomography: A review. J. Innov. Opt. Health Sci, 10, 1730006(2017).

    [7] J Gamelin, A Maurudis, A Aguirre, F Huang, P Guo, L. V Wang. A real-time photoacoustic tomography system for small animals. Opt. Exp, 17, 10489-10498(2009).

    [8] Q Shang, M Wu, J Yang, T Pan, G Zhang, D Wu, H Jiang. A comparative study on water and dry coupling in photoacoustic tomography of the finger joints. J. Innov. Opt. Health Sci, 13, 2050008(2020).

    [9] L. V Wang. Photoacoustic tomography: Omniscale imaging from organelles to patients. Int. Conf. Photonics and Imaging in Biology and Medicine, T5A.1(2017).

    [10] J. W Ni, K Matsumoto, H. B Li, Y Murakami, H Watanabe. Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain Res, 673, 290-296(1995).

    [11] J. T Ye, X Huang, Z. P Li, F. H Xu. Compressed sensing for active non-line-of-sight imaging. Opt. Exp, 29, 1749-1763(2021).

    [12] L Lin, P Hu, X Tong, S Na, R Cao, X Yuan. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat. Commun, 12, 1-10(2021).

    [13] X Yang, L Xiang. Photoacoustic imaging of prostate cancer. J. Innov. Opt. Health Sci, 10, 1730008(2017).

    [14] R Islam, M. S Islam, M. S Uddin. Compressed sensing in parallel MRI: A review. Inte. J. Image Graph, 2250038(2021).

    [15] N Bi, J Tan. Characterization of ℓ1 minimizer in one-bit compressed sensing. Anal. Appl, 17, 1005-1021(2019).

    [16] B Park, C. H Bang, C Lee, J. H Han. 3D wide-field multispectral photoacoustic imaging of human melanomas in vivo: A pilot study. J. Eur. Acad. Dermatol. Venereol, 35, 669-676(2021).

    [17] H Lan, J Zhang, C Yang, F Gao. Compressed sensing for photoacoustic computed tomography based on an untrained neural network with a shape prior. Biomed. Opt. Exp, 12, 7835-7848(2021).

    [18] Z Guo, C Li, L Song et al. Compressed sensing in photoacoustic tomography in vivo. J. Biomed. Opt, 15, 021311(2010).

    [19] M Bergounioux, E.́ Bretin, Y Privat. How to position sensors in thermo-acoustic tomography. Inverse Probl, 35, 074003(2019).

    [20] Y Privat, E Trélat, E Zuazua. Optimal observation of the one-dimensional wave equation. J. Fourier Anal. Appl, 19, 514-544(2013).

    [21] J Provost, F Lesage. The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging, 28, 585-594(2008).

    [22] M Lustig, D Donoho, J. M Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med, 58, 1182-1195(2007).

    [23] J Meng, L. V Wang, L Ying et al. Compressed-sensing photoacoustic computed tomography in vivo with partially known support. Opt. Exp, 20, 16510-16523(2012).

    [24] J Frausto-Solis, J. P Sánchez-Hernández, M Sánchez-Pérez. Golden ratio simulated annealing for protein folding problem. Int. J. Comput. Meth, 12, 1550037(2015).

    [25] D Delahaye, S Chaimatanan, M Mongeau. Handbook of Metaheuristics, International Series in Operations Research & Management Science, 272, 1-35(2019).

    [26] M. A Mohammed, D. A Ibrahim, A. O Salman. Adaptive intelligent learning approach based on visual anti-spam email model for multi-natural language. J. Intell. Syst, 30, 774-792(2021).

    [27] A Madkour, M. A Hossain, K. P Dahal, H Yu. Intelligent learning algorithms for active vibration control. IEEE Trans. Syst. Man Cybernet. C Appl. Rev, 37, 1022-1033(2007).

    [28] H Li, X Wan, T Liu, Z. S Liu, Y. H Zhu. A computed tomography reconstruction algorithm based on multipurpose optimal criterion and simulated annealing theory. Chin. Opt. Lett, 5, 340-343(2007).

    [29] R. A Rutenbar. Simulated annealing algorithms: An overview. IEEE Circuits and Devices Magazine, 5, 19-26(1989).

    Zezheng Qin, Yang Liu, Junke Chi, Yiming Ma, Mingjian Sun. The sparse array elements selection in sparse imaging of circular-array photoacoustic tomography[J]. Journal of Innovative Optical Health Sciences, 2022, 15(5): 2250030
    Download Citation